Теоретические аспекты управления доходами и расходами
Основная цель первой части задания оценить влияние на прибыль предприятия от реализации продукции одного вида следующих факторов:
- Х1 - коэффициент качества продукции;
- Х2 - доля в общем объеме продаж;
- Х3 – розничная цена продукции;
- Х4 – коэффициент издержек на единицу продукции;
- Х5 – удовлетворение условий розничных торговцев.
Необходимо, применив регрессионные методы анализа, построить математическую модель зависимости прибыли от некоторых (или всех) из вышеперечисленных факторов и проверить адекватность полученной модели.
Прежде чем применить данным метод регрессионного анализа, необходимо провести некоторый предварительный анализ имеющихся в распоряжении выборок. Это позволит сделать выводы о качестве имеющихся данных, а именно: о наличии или отсутствии тренда, нормальном законе распределения выборки, оценить некоторые статистические характеристики и так далее.
Для всех последующих расчетов примем уровень значимости 0,05, что соответствует 5% вероятности ошибки.
Исследование выборки по прибыли (Y).
- Математическое ожидание (арифметическое среднее) 34,91761905.
- Доверительный интервал для математического ожидания (22,75083;47,08441).
- Дисперсия (рассеивание) 714,402159.
- Доверительный интервал для дисперсии (439,0531; 1564,384).
- Средне квадратичное отклонение (от среднего) 26,72830258.
- Медиана выборки 24,14.
- Размах выборки 79,89.
- Асимметрия (смещение от нормального распределения) 0,370221636.
- Эксцесс выборки (отклонение от нормального распределения) -1,551701276.
- Коэффициент вариации (коэффициент представительности среднего) 77%.
Проверка статистической независимости выборки (проверка наличия тренда) методом критерия серий. Результаты проверки представлены в таблице 5 (2-й столбец). Сумма серий равняется 5. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 5 до 15, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.
Проверка статистической независимости выборки (проверка наличия тренда) методом критерия инверсий. Количество инверсий представлено в таблице 5 (3-й столбец). Сумма инверсий равняется 81. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 64 до 125, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.
Таблица 5 Критерии серий и инверсий
Прибыль Y % |
Критерий серий |
Критерий инверсий |
1 |
2 |
3 |
1,99 |
- |
0 |
12,21 |
- |
5 |
23,07 |
- |
7 |
24,14 |
+ |
7 |
35,05 |
+ |
7 |
36,87 |
+ |
7 |
4,7 |
- |
0 |
58,45 |
+ |
6 |
59,55 |
+ |
6 |
61,42 |
+ |
6 |
61,51 |
+ |
6 |
61,95 |
+ |
6 |
71,24 |
+ |
6 |
71,45 |
+ |
6 |
81,88 |
+ |
6 |
10,08 |
- |
0 |
10,25 |
- |
0 |
10,81 |
- |
0 |
11,09 |
- |
0 |
12,64 |
- |
0 |
12,92 |
- |
0 |
Итого |
5 |
81 |
Проверка гипотезы о нормальном законе распределения выборки с применением критерия . Разобьем выборку на интервалы группировки длиной 0,4*среднеквадратичное отклонение = 10,69132103. Получим следующее количество интервалов группировки размах/длина интервала=7.Все данные о границах интервалов, теоретических и эмпирических частотах приведены в таблице 6
Таблица 6 Критерий
Интервалы группировки |
Теоретическая частота |
Расчетная частота |
1 |
2 |
3 |
12,68132103 |
0,221751084 |
4 |
23,37264207 |
0,285525351 |
2 |
34,0639631 |
0,313282748 |
1 |
44,75528414 |
0,2929147 |
2 |
55,44660517 |
0,233377369 |
0 |
66,1379262 |
0,158448887 |
5 |
76,82924724 |
0,091671119 |
2 |