Теоретические аспекты управления доходами и расходами
Рефераты >> Финансы >> Теоретические аспекты управления доходами и расходами

Исследование выборки по доле в общем объеме продаж (Х2).

- Математическое ожидание (арифметическое среднее) 2,083809524.

- Доверительный интервал для математического ожидания (1,748443949; 2,419175098).

- Дисперсия (рассеивание) 0,542784762.

- Доверительный интервал для дисперсии (0,333581504; 1,188579771).

- Средне квадратичное отклонение (от среднего) 0,736739277.

- Медиана выборки 1,9.

- Размах выборки 2,83.

- Асимметрия (смещение от нормального распределения) 1,189037981.

- Эксцесс выборки (отклонение от нормального распределения) 1,48713312.

- Коэффициент вариации (коэффициент представительности среднего) 35%.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия серий. Результаты проверки представлены в таблице 9 (2-й столбец). Сумма серий равняется 11. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 5 до 15, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия инверсий. Количество инверсий представлено в таблице 9 (3-й столбец). Сумма инверсий равняется 89. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 64 до 125, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.

Таблица 9 Критерии серий и инверсий

Коэффициент качества продукции Х2

Критерий серий

Критерий инверсий

1

2

3

1,24

-

0

1,54

-

4

1,31

-

1

1,36

-

1

2,65

+

14

1,63

-

2

1,66

-

2

1,4

-

1

2,61

+

10

2,42

+

7

3,5

+

9

1,29

-

9

2,44

+

6

1

2

3

2,6

+

6

2,11

+

4

2,06

+

3

1,85

-

1

2,28

+

2

4,07

+

2

1,84

-

0

1,9

+

0

Итого

10

84

Проверка гипотезы о нормальном законе распределения выборки с применением критерия . Разобьем выборку на интервалы группировки длиной 0,4*среднеквадратичное отклонение = 0,294695711. Получим следующее количество интервалов группировки размах/длина интервала=9. Все данные о границах интервалов, теоретических и эмпирических частотах приведены в таблице 10

Таблица 10 Критерий

Интервалы группировки

Теоретическая частота

Расчетная частота

1

2

3

1,534695711

8,613638207

5

1,829391421

10,71322271

3

2,124087132

11,35446101

5

2,418782843

10,25476697

1

2,713478553

7,892197623

5

3,008174264

5,175865594

0

3,302869975

2,892550245

0

3,597565686

1,377500344

1

3,892261396

0,559004628

1


Страница: