Методы финансового планирования и прогнозирования
Методика Бивера, в принципе, может точно определить вероятность наступления банкротства. Она является вполне универсальной, поскольку связана с сопоставлением каждого из расчетных коэффициентов с нормативной величиной, а не с механической подставкой их значений в n-факторное уравнение. Однако горизонт прогнозирования в пять лет значительно уменьшает точность прогноза. В связи с этим, а, также учитывая динамичность экономической ситуации в стране, желательно горизонт прогнозирования сузить до одного года.
Стоит отметить, что помимо данных методик на западе разработано множество других как формализованных, так и неформализованных методов прогнозирования банкротства предприятий: модель Таффлера, коэффициент Фулмера, А-счет Аргенти, модель Лиса, модель Коннана-Гольдера и др., которые также изучаются и обсуждаются финансовыми аналитиками, как России, так и всего мира.
1.2 Анализ применения методов прогнозирования банкротства предприятия, разработанных российскими экономистами
1.2 1 Возможность применения шестифакторной модели Зайцевой
Согласно П.В. Байдаусу, относительно недавно была разработана шестифакторная математическая модель О.П. Зайцевой, в которой предлагается учитывать следующие факторы:
§ Куп – коэффициент убыточности предприятия, который рассчитывается как отношение чистого убытка к собственному капиталу (нормативная величина 0);
§ Кз – соотношение кредиторской и дебиторской задолженности (нормативная величина 1);
§ Кс – показатель соотношения краткосрочных обязательств и наиболее ликвидных активов, являющийся обратной величиной показателя абсолютной ликвидности (нормативное значение 7);
§ Кур – убыточность реализации продукции, равная отношению чистого убытка и объема реализации продукции (нормативное значение 0);
§ Кфр – соотношение заемного капитала и собственного капитала;
§ Кзаг – коэффициент загрузки активов, равный обратному значению коэффициента оборачиваемости активов (определяется равным значению данного коэффициента в периоде, предшествующем текущему).
На основе данных показателей рассчитывается комплексный коэффициент банкротства:
При подстановке нормативных значений в уравнение получим нормативную величину комплексного коэффициента банкротства. Если фактическое значение данного агрегатного коэффициента окажется больше величины, установленной по нормативам, то из этого следует, что вероятность банкротства расценивается как высокая. Если же фактическое значение комплексного коэффициента меньше нормативного, то вероятность банкротства мала.[10]
Однако, несмотря на относительную новизну модели, Крюков А.Ф. и Егорычев И.Г. нашли в ней существенные недостатки. По их мнению, определение весовых коэффициентов в шестифакторной математической модели О.П. Зайцевой является не совсем обоснованным, поскольку весовые коэффициенты в этой модели были определены без учета поправки на относительную величину значений частных коэффициентов. Так нормативное значение показателя соотношения краткосрочных обязательств и наиболее ликвидных активов равно семи, а нормативные значения коэффициента убыточности предприятия и коэффициента убыточности реализации продукции равны нулю. Следовательно, даже незначительная динамика первого из упомянутых показателей приведет к изменениям агрегатной величины значительно более сильным, чем изменение коэффициентов убыточности. Также авторы считают, что было нецелесообразным использовать показатели, являющиеся обратными либо противоположными коэффициентам рентабельности собственного капитала, рентабельности реализации продукции, коэффициенту абсолютной ликвидности и коэффициенту оборачиваемости активов. К значительным недостаткам модели они относят наличие функциональной зависимости между коэффициентом убыточности предприятия, коэффициентом убыточности реализации продукции, отношением заемного и собственного капитала и коэффициентом загрузки активов. В данном случае коэффициент убыточности предприятия функционально зависит от трех других показателей, а, следовательно, из модели целесообразно исключить либо Куп, либо Кур, Кзаг и Кфр.[11]
1.2.2 Характеристика четырехфакторной модели Иркутской государственной экономической академии
Орехов. В.И., Балдин К.В., Гапоненко Н.П. в своей работе рассматривают четырехфакторную модель Иркутской государственной экономической академии, которая имеет вид:
,
где К1 – оборотный капитал / сумма активов;
К2 – чистая прибыль / собственный капитал;
К3 – выручка от реализации / сумма активов;
К4 – чистая прибыль / затраты.
Вероятность наступления банкротства описывается следующей шкалой:
§ – вероятность банкротства максимальная (90–100%);
§ – вероятность банкротства высокая (60–80%);
§ – вероятность банкротства средняя (35–50%);
§ – вероятность банкротства низкая (15–20%);
§ – вероятность банкротства минимальная (до 10%)
Основными достоинствами исследуемой модели авторский коллектив называет простоту в использовании и вполне подробное описание методики расчета агрегируемого показателя на основе приведенных факторов.[12]
Аналитик журнала «Люди дела» А. Семеней, отмечает, что по результатам практического применения данной модели появилась информация о том, что значение R-счета во многих случаях не коррелирует с результатами, полученными при помощи других методов и моделей. Так, например, при обследовании предприятия посредством метода Иркутской академии получаются значения, говорящие о наилучшем состоянии анализируемой организации, однако альтернативные модели дают положительный в плане приближения банкротства результат. Исходя из этого, можно предположить, что данная методика годится только для оценки кризисной ситуации при непосредственном наблюдении ее первоочередных признаков.[13]
Д. Хавин предлагает преобразовать данную модель, рассчитав весовые значения коэффициентов при переменных для каждой отрасли индивидуально. Тогда в общем виде модель Иркутской государственной экономической академии будет выглядеть так:
,
где С1…С4 – весовые значения коэффициентов при переменных, которые корректируются для каждой отрасли индивидуально.
Автор провел эмпирическое исследование предприятия нефтехимической промышленности, для которого данная модель приняла вид:
При проведении расчетов данная модель оказалась высококоррелируемой с Z-счетом Альтмана, средне коррелируемой с методом Таффлера и менее всего с двухфакторной моделью.