Комплексное число в школе
Рефераты >> Математика >> Комплексное число в школе

Гипотеза исследования – если учащиеся:

- знают определение комплексного числа, различные формы комплексного числа;

- умеют выполнять арифметические действия над комплексными числами, записанными в алгебраической и в тригонометрической форме;

- умеют изображать комплексные числа и действия над ними на комплексной плоскости;

- оперируют такими понятиями как комплексные числа, действия над комплексными числами, различные формы комплексного числа, корни многочленов,

то формирование и усвоение понятия комплексного числа прошло успешно.

Цель, предмет и гипотеза исследования определили необходимость постановки и решения следующих задач:

1. Исследовать особенности математического мышления старшеклассников.

2. Исследовать процесс формирования понятий на материале темы «Комплексные числа».

Логика и этапы исследования:

I этап: диагностический.

Зафиксировать успеваемость детей на момент исследования; оценить уровни и качество усвоения понятий учащимися, а также получить необходимые сведения о достигнутом уровне их умений и навыков.

В результате мы имеем объективную информацию об индивидуальной сформированности математического мышления испытуемых, их интересах и способностях.

II этап: формирующий.

С помощью системы методов, приемов, средств обучения и т.д. сформировать у учащихся понятие комплексного числа.

В итоге мы сможем оценить, как и на сколько успешно проходило усвоение нового понятия.

III этап: диагностический.

Используя методы опроса, изучая продукты деятельности учащихся, школьную документацию, сделать выводы о степени усвоения данного понятия. Подвести итог об исследовании особенностей математического мышления и процесса формирования понятия комплексного числа.

Описание методов.

Диагностические: I этап.

Беседа проводилась с учителем математики, которая в 10ª классе преподает алгебру и геометрию. Беседа состоялась по истечении некоторого времени с начала педпрактики, после того, как произошло знакомство с классом, определилась группа испытуемых.

Прежде был сформулирован приблизительный ряд вопросов, по которым нужно было получить необходимую информацию:

- каков круг интересов ребят;

- сколько учащихся непосредственно проявляют интерес к математике, и чем это обосновано;

- к моменту исследования каков их уровень самостоятельности, активности, организованности;

- умеют ли учащиеся применять на практике приемы и операции мышления;

- насколько развито абстрактное, конкретное, логическое и творческое мышление;

- насколько полно ребята усваивают содержание и объем понятий;

- насколько полно усваивают связи и отношения данного понятия с другими;

- умеют ли оперировать понятием при решении предлагаемого ряда упражнений и задач, нестандартных заданий;

- чем можно объяснить, что в группу испытуемых вошли именно те или иные учащиеся.

Учитель проявила заинтересованность, давала ясные, исчерпывающие ответы, которые ещё и подтверждала примерами из опыта работы с учащимися 10а класса.

Изучая школьную документацию, в частности, классный журнал – оценки по предметам алгебра и геометрия, фиксировалась успеваемость учащихся, что давало сведения об их индивидуальности, например, какие учащиеся активны на уроке, у кого оценки выше при ответе у доски, а у кого – при самостоятельной работе, какие темы усваиваются лучше, какие труднее и т.д.

III этап.

Контрольная работа.

После того, как было сформулировано у учащихся понятие комплексного числа, была проведена контрольная работа для того, чтобы оценить насколько успешно прошло усвоение нового понятия.

В первое задание вошло 3 упражнения: а) (3-2i)(4+i)+10i;

б) 1-i + 1+i ; в) (2-i)³

1+i 1-i

В результате проверки мы сможем увидеть научились ли учащиеся выполнять арифметические действия: сложение, вычитание, умножение, деление, возведение в степень комплексных чисел.

Второе задание: х+у+(х-у)i=8+2i позволяет нам зафиксировать усвоено ли учащимися такое понятие как равенство комплексных чисел.

С помощью третьего задания: а) х2–4х+5=0; б) х4–1=0 мы сможем узнать научились ли ребята решать квадратные уравнения вне зависимости от дискриминанта, а так же путем разложения на множители.

Проверяя четвертое задание: а) z=5-2i; б) –1<Re z≤2 мы увидим умеет ли изображать комплексные числа учащиеся на комплексной плоскости, знают ли составные части комплексных чисел, умеют ли их изображать.

И пятое задание, в котором нужно записать числа z1=i и z2=2+√3i в тригонометрической форме, а затем найти (z2)³ , z3=z1· z2 позволит нам узнать насколько усвоен ребятами переход от алгебраической формы к тригонометрической, и научились ли они выполнять действия над комплексными числами в тригонометрической форме.

Т.о. контрольная работа позволит нам увидеть насколько эффективно проходило формирование и усвоение понятия комплексного числа.

Формирующие: II этап.

Для успешного усвоения понятия комплексного числа была разработана система поэтапной подачи материала. Вся тема была разбита на пять блоков. А именно: 1 блок содержит в себе историческую справку, определение комплексных чисел в алгебраической форме, действия над ними, геометрическую интерпретацию комплексных чисел. Цель занятий этого блока – усвоение новых знаний.

2 блок: Действия над комплексными числами, заданными в алгебраической форме. Цель – повторение и закрепление полученных знаний, формирование умений и навыков.

3 блок: Тригонометрическая форма комплексных чисел. Переход от алгебраической формы комплексных чисел к тригонометрической и обратно. Цель занятий – усвоение и закрепление новых знаний.

4 блок: Действия над комплексными числами в тригонометрической форме. Формула Муавра. Извлечение корней из комплексных чисел. Цель - усвоение и закрепление новых знаний.

5 блок: Решение упражнений. Комплексные корни многочленов. Цель занятий блока – повторение и закрепление полученных знаний, формирование умений и навыков.

С помощью методов стимулирования и мотивации интереса к учению заинтересовать учащихся тем, что они познакомятся с решением квадратных уравнений вне зависимости от дискриминанта, т.е. и в случае, когда D<0.

Изучение нового материала началось с беседы: повторение опорных знаний – известных им сведений о числовых множествах. Типовые вопросы беседы:

1. Определение натуральных чисел и их обозначение.

2. Определение целых чисел и их обозначение.

3. Определение рациональных чисел и их обозначение.

4. Определение действительных чисел и их обозначение.

5. Какая арифметическая операция не всегда выполнима во множестве натуральных чисел?

6. Т.о. какое множество необходимо было ввести?

7. Почему ввели множество рациональных чисел?

8. Действительных? Т.е. не могли производить всех необходимых измерений во множестве рациональных чисел.

9. Какая операция не всегда выполнима во множестве R?

10. Предлагается решить уравнение х2+1=0 (и, если не ответили на вопрос №9, задать его ещё раз).


Страница: