К решению нелинейных вариационных задач
Рефераты >> Математика >> К решению нелинейных вариационных задач

26

Минимальное значение функция принимает в точке A<i(4;l),

iW=0. , , -

I: г^с^ i = i( e)- zfe;o) =-^

II: ^а^ г ^ ^fe; - ^" ; глобальный /^wc г = гЛ?; ^)^/c)^2S.

ПримерЗ

Найти максимум и минимум значения функции i ~- Vf

при ограничениях: ( Xr- 3Q. ^^

\ зе^^^-S , ^ ?^ ^г^)

(^ У, ^ Ч, Жг ^6'

Решение:

В этом случае (рис.4) область допустимых решений не является вы­пуклой и состоит из двух отдельных частей, fnin. 2= i (^(-/;^)) = i(L(^^))-=^y I. ^лх i-- i (^ r-^;6'J; -~ ^/9

II.

Точка М (7;4/7) - есть точка глобального максимума

Н

Общая задача математичес­кого программирования формулируется следующим

образом:

\f1 f \ найти вектор: л С ^ / ^у

координаты которой удов­летворяет системе ограни­чений: д

^(^,.,^=^, ^'^/2, .,,С ^ (Х,, .,^]'=^, i^^f, .,n-

Н и доставляющий экстремум ^ э. функции i^ f('x^ ., х^).

1 ^ ^ 7^

Рис.4

В настоящее время (начиная с 1950-х годов), бурно развивают­ся методы решения задач математического программирования с привлече­нием современной вычислительной техники.

27

II. О КРАЕВЫХ ЗАДАЧАХ

2.1. Понятие о краевых задачах

К краевым задачам дифференциальных уравнений сводятся боль­шинство естественно-технических проблем, которые возникают при со­ставлении математических моделей реальных процессов. Здесь Приводятся лишь основные понятия о краевой задаче (на примере двухточечной задачи) и об основных методах решения. Задача

Найти решение дифференциального уравнения Ц = х. в области о^ ос ^ / при граничных условиях ^fo)=o^^)= -f Решение: ^ Интегрируя уравнение У = х- получим общее решение -У = ^-^ ^ х-^С^ ^

а удовлетворяя граничным условиям, получим систему:

с} = о Со + С, -о^ Q = о ('с^=о

/t I . •••» ) ,

У' i

./:

- г" •

Рис.1

(Ч(с)=0 [0-Ц\Л^ t/6

Тогда решение задачи будет; У= ^^ ^ •% х-

Геометрический смысл задачи приведен на рисунке 1

Обобщение:

Рассмотрим простейшую двухточечную задачу:

Найти функцию iy= Ц (^), удовлетворяющую дифференциальному уравнению второго порядка и "^ -f(v, у, у '} ц .\ (2.1) и краевым условиям: у(а-)^ А , ^(ё)-= В.

Геометрически это означает,

что требуется найти интеграль­ную кривую уравнения (2.1),

проходящую через две данные

точки: М (л,А)^(^ Ь)

/\

(см.рис. 2). На предыдущем при­мере мы видели, что решение

краевой задачи на последнем

этапе свелось к решению систем

уравнений. А при этом может

Рис.2

возникать три случая:

1) Существует множество решений;

'2) Существует единственное решение;

3) Нет решений.

28

Различные случаи решений и постановки краевых условий приведем в следующем пункте 2.2.

2.2. Примеры .аналитического решения краевых задач

I. Пусть дано дифференциальное уравнение у '•=• - ^у и краевые условия:

а)Г^о)-(9 Q)^(o)^o вГ^^^

\^W^l Ц^П)=0 1у^2

Найдем общее решение уравнения U "i- ^и-^ с> .Ее характе­ристическое уравнение будет: ^^ ^-^0 и />^ = ± 2с . Поэтому :

у^ Cf сс>5 ^ус + gl s^n. S. за. . общее решение.

С,-о

0 - ^

a) r^fo)=o (C}-cc5^ o^Ci-^nSO^O \и[^}^1 " \_Cf-cv^-e/^^C,L-^S-8/^S.

"7= ri / s'.^ о - единственное решение (см.рис.3).

б)С^с^о C^-co^-o^ C^-s^tS.o^o г е^о

[§Un]^o ^iCf-c^^c/l^ Gi- ^^-71-- о ^iCt-о^о

в)

отсюда: С{ = о, С д. - любое число, поэтому множество ре­шений будет и = Сл • •sin <3-^ (см.рис.4) - синусоиды с амплитудой Сл, .

ru^o)=o f(V- Ccss-o^- (^-^ S-o =.о (С(-С> l^W^2. ^ i^-cps^n ^ Q-5-.A-^ = 2. ^ i^ = %nS^^

=• оо

, т.е. нет решения.

/

ТГ у

рис.3

при краевых условиях:

II. Решить уравнение ^ - 5^ - <,У

^"/оМ, ^+00^=0.

Решая характеристическое уравнение г: 'г- -5г - 4" •= ^> , получим: ii =<', ^ = -У . Тогда общее решение будет:

у^б^-к^е^ , у^ ^-^-е^- ^в^. Удовлетворяя краевым условиям:

( !/'(с)^ ^•0-е^й.е-0^

^-f^--^ ''/^ ^-г^-О^^о

[it-7 0й 1»-7ОТ

Второе условие выполняется только при С-/ ^ о . Тогда из пер­вого условия получим <• •0 Q c>~ Сл--{ = ^ -т- <^-= - ^

•—Ti*

Итак решение задачи будет: у = - ^ е (рис.5).

Рис.5

при


Страница: