К решению нелинейных вариационных задач
Рефераты >> Математика >> К решению нелинейных вариационных задач

^

Пока о достоверности решения у /• /а^) судить очень трудно, не­обходимы более высокие приближения.

3) Найти решение вариационной задачи

н^у] -JY.?v^v^, yfo)^)-o.

С?

имеем:

Точное решение:

Р = J?JC.Vi- U

^-^/' ^-^//^

Общее решение: у "= ^ (? -i- Cx.o. Из условий ufo)-=^ , и^^у^о

е,- -1—— --^

Тогда точное решение задачи будет:

49

^ -X

е -е е^е^

- х ^ ^

/7)Е fb ^w-л - ^^^'- e~x;- ^ •

Методом Ритца в первом приближении решение ищем в виде:

<у= ех(^-ус)-. с(^м-^), у^е^-^^};

7r^j=JС c(^^^^з)+aC^'-^з>^^^^-^ -.^jj<^- %c^^a^^^};

(р^с)-^^^ ^у^е^о ^ с^-^.

Итак решение по Ритцу:

^-i-^

Сравнительная таблица имеет вид:

Л.

0

0,5

1

1,5

2

у^

0

-0,275

-0,3571

-0,2758

0

^г)

о

-0,2126

-0,3520

-0,3258

0

50

3.6. Об одном подходе к решению нелинейных вариационных задач

В отличии от метода Ритца, искомую функцию в двуточечной вариа­ционной задаче зададим в виде:

r-^^f^-^^

При этом граничные условия и{а ) = А, ^• (б/=- /З выполняются, а ^ является искомым параметром. Решим этим методом пример из пункта 3.3.

Имеем:

Г-°\^ ^ - х ^е - ^j ]Т^)^Г^-^^^^ -j^-w

л/

Минимальное значение функционала J соответствует минимальному значению функции У/о^ . Найдем /^»г- •f(<jL) :

pi fi}-rAU\' + ( -L_}' - ^=^L - J: .п ^ <^-Ь^-/^' [^^М ~ ^о/-/;^ (л^)^ ~~0^

(^ ^^)(^)^(&^)^^\^^^^/^-^ п

Так как -^^У^^/^^и A f^V^ -^W^<9 то корень уравнения нахо-дится в промежутке [1;1Д]. Представим (*) в виде </=с/-^ ^ -f^f^^^M из условия fttd)c(^W)^ ^ ^X^/,'f получим С. =-0,01.

Поэтому сходящийся алгоритм будет:

с4 ^ = о4 - оо< (((( ^ i-^)^ ~ ^)^ - ^4 - /) ^

Берем Лу =1,05 и по формуле {**) последовательно вычислим о/< =1,04256, ., ^=1,03004, о4=1,02991, с/^= 1,02990. Поэтому примем ц/^ 1,0299 ^1,03; тогда решение будет:

^а.^е^^^

51

Решение по предложенному методу и методу Ритца почти совпадают:

 

0

0,2

0,4

0,6

0,8

1

 

0

0,2111

0,4166

06166

0,8111

1

 

0

0,1906

0,3902

0,5968

0,7981

1

Итак, предложенный подход к решению задач может быть применен, т.е. ему посильны и нелинейные задачи.

В частности, рассматривая нелинейную вариационную задачу на

отыскание ги-^ п- функционала

^/-

У /У^А7 - / f/^ ^y)ol^

с краевыми условиями ^/о^= с? ; у /"•/) -= У ;

будем отыскивать решение на кривой ^ -^ ^ ^ . Тогда функцио­

нал примет вид:

У-J/: (J, ^-') \ я^^^/Г^-г:^ х. ^JA =

.f^^L, ^ W-с^^.,W ( ^-^ -й^-7/д if.i.ci-')

и задача об определении его л^л. сводится к отысканию пъС ^1{oi)

га). ^=^,. ^ -^ - ^; т - ^,

-Г(^)^; f"(^)^o:

Поэтому при</= 11^- //<4/примет наименьшее значение на кривой и-, r^^-wm g ^^ у , азначение ^ ^/^1^1,183.

52

3.7. К методу Ритца для двумерных задач

Для функционала •^- ^J '( v-' ^ ^^Р^)^ <^ уравнение Эйлера- Лагранжа примут вид:

JiL-iL^l-.-S-/2L ^ ъг-ъг ъ^\ър) осЛм / 5где ?~ эх '

^ ^-? = ^ •

Пусть ищется экстремум функционала

f[:iC^n-J[h^^- г<^-?^4 .средифунк-ций, обращающих в нуль на границе квадрата, ограниченного прямыми dc^^-f •> с/ = ± d • При этом мы приходим по существу к задаче Дирихле для уравнения Пуассона ^ у. у- i^y ="У С^^}^

г^;Г^г^/;/^ ^/;-/^г^-/;~/;=<9 (см.рис.12)

Эта классическая задача не решается | точно с помощью элементарных функций. Приближенное решение ищем при ^(у/^)~=^ —<———— ———*77"^.

по методу Ритца в виде i-i ^f^~^)('f~^2'} Подстановка в исходный функционал дает •

f^f[W(^ ^^Г. ^ ^.г.с(^х^}}Л^. ^j-^ ^с^-Г^)

Тогда Г1^)-^-^С- ^---0- С--^ :

ПФ^-^о, ^ у ^ й=-^, u—ig(^)W

решение задачи при первом приближении.

Сравнение с точной формулой (имеющий вид бесконечного ряда) показывает, что погрешность этого приближенного решения в среднем равна 1,5%, а погрешность в значении функционала около 0,2%. Таким об­разом, идея метода Ритца распространяется для двумерных (и, вообще, для многомерных) задач.

53

ЗАКЛЮЧЕНИЕ

Дипломная работа посвящена методам решения экстремальных за­дач, при этом приведены основные идеи различных методов, которые поч­ти совсем не рассматриваются в школьном и педвузовском курсе матема­тики. Таким образом, заполнен существенный пробел в математическом образовании и подготовлен материал для изучения основ современной прикладной математики в классах с углубленным изучением математики.

Основные выводы по дипломной работе:

1. В краткой реферативной форме изложены элементарные методы решения экстремальных задач, основанные на известных неравенствах ти­па Коши.

2. Приведены основные идеи методики решения задач математиче­ского программирования: три разновидности задач линейного программи­рования, принципиально различные примеры решения задач нелинейного программирования.

3. Изложены методы решения двухточечной краевой задачи; дан вы­вод сходящегося алгоритма и на его основе решены на ЭВМ ряд линейных задач с переменными коэффициентами.


Страница: