К решению нелинейных вариационных задач
Рефераты >> Математика >> К решению нелинейных вариационных задач

Таблица 2

Математическая модель задачи

Пусть 1\- количество первого вида корма, х^ - количество второго вида корма, получаемого животным за сутки. Так как животное может по­лучить питательных веществ больше нормы ^ , то очевидно:

(Ц.^^^ , '^--f^.s.

с--Г

(3)

Общая стоимость кормов, затраченных на одно животное будет:

(4)

т= C\x^C^Xs =

i^ W Итак, математическая задача формируется следующим образом

23

Найти неотрицательное решение системы неравенств (3), дающее минимальное значение линейной формы + = C-t з^ + Сг ^-а. . Выраже­ние для + называют линейной формой потому, что в него не входят члены со степенями выше первой и произведением -с, и 3^.

Решение задачи (частный случай).

Пусть g/=6", 8>^f2, ^д=^ 0,^2 , Q^ ^, ^a ^/ ^ ^ gs.^ =^

CZ^i = / , С/ ^ Q 2 ^д. ^ ^ 3 , л? ^ д?/, js/ = •2?-2 .

Множество решений системы неравенств:

( <?^+ У >.6 2 э^ + ^у ^ ^ ^^1 + ^ ^- ^

есть открытый многоугольник А - (рис.2)

Среди всех точек этого множества нужно найти такую, координаты которой минимизируют линейную форму +=с^5х+ о, -5 У . Если зафик­сировать какое-нибудь значение выражения -f= С , то получим линейное уравнение с двумя неизвестными ^S-sa-O^y^c ^ график которого есть прямая. При изменении от ~т>одо оо прямая o^v.-t-Qb'd^c , сме­щаясь параллельно самой себе, "зачертит" всю плоскость. При некотором значении с = С/ эта прямая достигнет многоугольника М в точке В • Оче­видно, в этой точке -f примет наименьшее значение. Координаты точки В, находим решив систему: Г 2 х- i-y ^ G

i <?г ^ ^ = /'<?

Итак, наименьшее значение линейной формы -/=<^5х-к^3^ в М. достигается в точке в ^г; 2) Таким образом, для наивыгод­нейшего откорма животных надо брать оба вида кормов по две единицы.

24

1.7.3. Задача об оптимальном использовании сырья

1. Постановка задачи

Пусть предприятие вырабатывает продукцию двух видов П, и Лд , для чего используется сырье трех видов S<, ^ , -?э соответственно в коли­чествах ^ , ^z. , ^.i . Для изготовления единицы продукции (^потребуется и/, , й& , ^<s единиц сырья Sf , ^г. , •5л соответственно. Условно запишем это так: П = Он S{ + Ом. 5л ч- С?/& 5д . Аналогично допуска­ем , что П = Ог/ ^ у- ^ -s;? + ^^ ^з . Доход, получаемый предприятием от выпуска единицы продукции Л< и Па равна соответ­ственно Су и Сд. рублям. Требуется спланировать работу предприятия так, чтобы обеспечить наибольшую прибыль. Все данные представим в виде таблицы 3.

Таблица 3

2. Математическое описание задачи

Предположим, что нужно изготовить •3?/ единиц продукции П< и Л^ единиц продукции П^ . На это уйдет d^ Л\ + Cf^ Xa. единиц сырья J/ i. = /, 2/3 . Принимая во внимание ресурсы предприятия, можно написать:

(2// Л'< + 0.^ ^ ^ ^/ о^ О'/ + 0<.i ^ ^ ^

(2/s Я?/ + йгд ^ ^ ^з

Общий доход выражается линейной формой ^= б< а?/ + Сл. 3?г. Итак, требуется найти неотрицательное решение системы нера­венств, дающее максимальное значение f^ e^ ^ -^ С^Ха. Эта

задача решается аналогично задаче о рационе.

25

1.7.4. Понятие о задаче нелинейного программирования

Рассмотрим примеры решения простейших задач нелинейного про­граммирования.

Пример 1. , Найти минимальное и максимальное значения функции ^= (^ ~^) + (3^ "^ ) при ограничениях С X/-^ Хл. >- ^ \ -?гс< +3^1 ^{2 L лу s^, эс^^О

Решение:

Область допустимых решений представляет собой многоугольник АВСЕ (рис.3). Проводя из точки М, как из центра, окружности различных радиусов, получим: минимальное значение функции г (SZ>)=196/13 прини­мает в точке Ю (24/13, 36/13), в которой окружность касается области ре­шений. Точка ^) не является угловой, ее координаты находят решая си­стему уравнений, соответствующих прямым /Йс> и C£~ . Имеется два ло­кальных максимума: з ( д\ = (f-^)^ + (о-б)2 = ^•5' ;

i(^}-- C&-^)2 + (о~б)2 = Ю

6 . ^

рис.3 Пример 2

Пусть область допустимых решений остается прежней, а й-s (,Т/-^) ^ -<- ( ^й~^)2 найти минимум и максимум i . Решение:

Так как

2M> i

(е)

, то вершина А есть точка глобального мак-

симума.

\.

 

— —

---^м

   
       

-

/ 1

   
         

/

   
   

f-

is,

 

/

   
 

н

\^

^

         
   

• ^

s

 

/

   
   

,''

 

\

(

   
       

<2>

     
     

/' /

 

• ':; ' •-- г

   
     

/

 

^. 1

   
     

/

//

     
     

/

/ /

     
         

у

   
   

в

 

/

     
 

f

\

 

f /

/ / / \>•~-

   
     

\

Г4

.—^-^-

 
 

б

Г л

ч

6

-^

'>


Страница: