Задача ЛагранжаРефераты >> Математика >> Задача Лагранжа
Модель II.
Рассмотрим теперь случай, который отличается от предыдущего только тем, что превышение спроса над запасами уже допускается, т.е. штраф за нехватку конечный.
Уравнение цен и его аналитическое решение.Рассматриваемая ситуация изображена на рис. 7. В начале каждого интервала имеется уровень запасов. Из подобия треугольников находим.
Средний запас в течении t1, равен S/2. Поэтому затраты на хранение за всё время t1
составляют S/2 * t1 С1. Средняя нехватка (превышение спроса над уровнем запасов) за врем t2 равна (q-S)/2, и штраф за время t2 равна (q – S)/2, и штраф за время t2 составляет ((q – S)/2)* Q2 t2 .
Таким образом, ожидаемые суммарные расходы за всё время Т определяется следующим выражением:
Подставляя сюда найденные выше выражения для t1 и t2 учитывая полученное раннее выражение для ts, имеем
Из уравнения (12) можно найти оптимальные значения для q и S, при которых полные ожидаемый расходы будут минимальными.
После дифференцирования уравнения (12) имеем:
.
Приравнивая эти частные производные нулю и упрощая, получаем выражения,
Решая эту систему уравнений относительно S и q, находим
и, следовательно,
Что бы получить Qо, заменим, что
Поставляем (14) и (51) в (12), после упрощения получаем
При сравнении результатов, полученных для моделей I и II, можно заметить, что во первых уравнения (9), (10) и (11) можно получить из уравнения (13), (15), и (16), если в них устремиться С2 к бесконечности. Этот результат нельзя считать неожиданным, так как модель I есть частный случай модели II.
Во – вторых, если С2 ¹ µ, то
Следовательно, ожидаемые суммарные расходы в модели II меньше, чем в модели I.
Пример II: Пусть сохраняются все условия примера I, но только штраф С2 за нехватку теперь равен 0,2 долл. за одно изделие в месяц. И уравнения (13) – (16) получаем:
При оптимальной стратегии ожидаемый дефицит к концу каждого периода составлял бы 4578 – 3058 = 1522 изделия.
6. Модель I. Модель Уилсона без ограничений
В качестве простейшей модели управления запасами рассмотрим модель оптимизации текущих товарных запасов, позволяющих повысить эффективность работы торгового предприятия. Такая модель строится в следующей ситуации: некоторое торговое предприятие в течении фиксированного периода времени собирается завести и реализовать товар конкретного (заранее известного) объема и при этом необходимо смоделировать работу предприятия так, чтобы суммарные издержки были минимальны. При построении этой модели используется следующие исходные предложения:
1. планируется запасы только одного товара или одной товарной группы;
2. уровень запасов снижается равномерно в результате равномерно производимой продажи;
3. спрос и планируемом периоде заранее полностью определен;
4. поступление товаров производится строго в соответствии с планом, отклонения не допускаются, штраф при неудовлетворенном спросе бесконечно велик;
5. издержки управления запасами складывается только из издержек по завозу и хранению запасов.
Суммарные издержки будем считать зависящими от величины одной поставки q. Таким образом, задача оптимального регулирования запасов сводится к нахождению оптимального размера q0 одной постановки. Найдя оптимальное значение управляемой переменной q, можно вычислить и другие параметры модели, а именно: количество поставок n0, оптимальный интервал времени tso между двумя последовательными поставками, минимальные (теоретические) суммарные издержки Q0.
Введем следующие обозначения для заранее известных параметров модели:
T - полный период времени, для которого строится модель;
R - весь объем (полный спрос) повара за время T;
C1 - стоимость хранения одной единицы товара в единицы времени;
Cs - расходы по завозу одной партии товара.
Полные издержки по хранению текущего запаса будет равны
Полные издержки по завозу товара будут равны
т.е. произведению стоимости завоза одной партии товара на количество поставок n, которые очевидно равны .
Тогда суммарные издержки управления текущими запасами составят
Таким образом, для задачи оптимального управления текущими запасами построена следующая математическая модель:
при ограничениях 0 < q £ Q (17)