Задача Лагранжа
Рефераты >> Математика >> Задача Лагранжа

1. Построение модели

Для постановки задачи необходима анализ системы, исследование её особенностей и возможных методов управления системой. Схема, построения в результате такого анализа, является либо изобразительной, либо аналоговой моделью. Таким образом, первый этап построения модели выполняется в процессе постановки задачи. После такого анализа системы уточняется перечень различных вариантов в решения, которые надо оценить. Затем определяются меры общей эффективности этих вариантов. Следовательно, следующий этап заключается в построении такой модели, в которой эффективность системы можно выразить в функции переменных, определяющих систему. Некоторые из этих переменных в реальной системе можно менять, другие переменные менять нельзя. Те переменные, которые можно изменить, назовем “управляемыми”. Различные варианты решения задачи необходимо выразить с помощью управляемых переменных.

Построение математической (символической) модели системы можно начать с перечисления всех элементов системы, которые влияют на эффективность работы системы. Если в качестве меры общей эффективности используется “общие ожидаемые издержки”, то можно начать с исследования изобразительной или аналоговой модели, полученной на стадии постановки задачи. Можно выделить операции и материалы, которым сопоставляется некоторые затраты. При этом получим, например, следующий исходный список:

1. Производственные затраты:

а) закупочная цена сырья;

б) издержки перевозки сырья;

в) стоимость приемки сырья;

г) стоимость хранения сырья;

д) стоимость планирования производства;

е) стоимость наладочных работ в цехе;

ж) стоимость процесса обработки;

з) стоимость хранения запасов в процессе производства;

и) стоимость завершения производства и передачи готовых изделий на склад;

к) стоимость анализа результатов работы группой планирования;

л) стоимость хранения готовых изделий.

2. Затраты на сбыт.

3. Накладные расходы.

2. Задача Лагранжа

Безусловный и условный экстремумы

Важное место в математиком аппарате экономики занимают оптимальные задачи – задачи, которых ищется наилучшее в определенном смысле решение. В экономической практике требуется использовать имеющиеся ресурс наиболее выгодным образом. В экономической теории одним из отправных пунктов является постулат о том, что каждый экономический субъект, имея определенную свободу выбора своего поведения, отыскивает наилучший со своей точки зрения вариант. И оптимизационные задачи служат средством описания поведения экономических субъектов, инструментом исследования закономерностей этого поведения.

Многие задачи оптимизации формулируются следующим образом. Решение, которое должен принять субъект, описывается набором чисел х1 ,х2 ,…,хn (или точкой Х=(х1 ,х2 ,…,хn) n-мерного пространства). Достоинства того или иного решения определяются значениями функция f(X) = f(х1, х2 ,…,хn) — целевой функции. Наилучшее решение — это такая точка Х, в которой функция f(Х) принимает наибольшее значение. Задача нахождения такой точки описывается следующим образом:

f(X) ® max.

Если функция f(X) характеризует отрицательные стороны решения (ущерб, убытки и т. п.), то ищется точка Х, в которой значение f(X) минимально:

f(X) ® min.

Минимум и максимум объединяются понятием экстремума. Для определенности мы будем говорить только о задачах максимизации. Поиск минимума не требует специального рассмотрения, поскольку заменой целевой функции f(X) на -f(Х) всегда можно “превратить недостатки в достоинства” и свести минимизацию к максимизации.

Из каких вариантов должен быть выбран наилучший? Иными словами, среди каких точек пространства нужно искать оптимум. Ответ на этот вопрос связан с таким элементом оптимизационной задачи, как множество допустимых решений. В некоторых задачах допустимыми являются любые комбинации чисел х1, х2,…,хn то есть множество допустимых решений - это все рассматриваемое пространство.

В других задачах следует принимать во внимание различные ограничения, означающие, что не все точки пространства доступны при выборе. В содержательных постановках задач это может быть связано, например, с ограниченностью располагаемого количества ресурсов.

Ограничения могут быть представлены в форме равенств вида

g(X) = О

или неравенства

g(X) ³ О.

Если условия имеют несколько другую форму, скажем, g1(Х) = g2(X) или g(X) £ A, то их можно привести к стандартному виду, перенеся в функции и константы в одну из частей равенства или неравенства.

Экстремум, отыскиваемый во всем пространстве, без каких-либо ограничивающих условий, носит название безусловного. Если целевая функция непрерывно дифференцируема, то, необходимое условие безусловного экстремума функции состоит в равенстве нулю всех ее частных производных:

Если же заданы ограничения, то экстремум ищется лишь среди точек, которые удовлетворяют всем ограничениям задачи, так как только такие точки являются допустимыми. В этом случае экстремум носит название условного.

Рассмотрим задачу поиска условного экстремума:

f(X) ® max

при условиях (2)

g1(Х) = 0; g2(Х) = 0, …, gn(Х) = 0,

все ограничения которой представляют собой равенства.

Если при этом целевая функция и все ограничивающие функции непрерывно дифференцируемы, то такую задачу мы будем называть задачей Лагранжа.

3. Задача Лагранжа с одним ограничением

Рассмотрим задачу, имеющую следующую структуру:

f(X) ® max

при условии (3)

g(X) = 0.

Рассмотрим пример. По склону горы идет дорога, требуется найти на ней самую высокую точку. На рис. 1 представлена карта местности с нанесенными на нее линиями

Рис. 1

равных высот; толстая линия – это дорога. Точка М, в которой дорога касается одной линий уровня, - это и есть наивысшая точка дороги.

Если Х = (х1, х2) – точка плотности, х1 и х2 – её координаты, то задаче можно придать следующую форму. Пусть f(Х) — высота точки Х над уровнем моря, а уравнение g(X) = 0 описывает дорогу. Тогда наивысшая точка дороги - решение задачи (3).

Если бы дорога проходила через вершину горы, то ее высшая точка была бы самой высокой точкой местности, и ограничение можно было бы не принимать во внимание.

Если же дорога не проходит через вершину, то, немного отклонившись от дороги, можно было бы подняться выше, чем двигаясь строго по дороге. Отклонение от дороги соответствует попаданию в такие точки, где g(X) ¹ 0; при малых отклонениях достижимую при этом высоту можно приближенно считать пропорциональной отклонению.

Идею решения задачи Лагранжа можно представить следующим образом: можно попытаться “исправить” рельеф местности так, чтобы отклонение от дороги не давало преимуществ в достижении высоты. Для этого нужно заменить высоту f(Х) функцией.


Страница: