Внеклассная работа по математике в школе
Рефераты >> Математика >> Внеклассная работа по математике в школе

Команда может отказаться делать очередной вызов (если у нее не осталось решенных задач и не хочет делать некорректный вызов). Тогда другая команда получает право рассказывать решения любых задач, оставшихся неразобранными.

После каждого выступления жюри дает командам очки как за доклад, так и за оппонирования.

1. Предельное число выходов к доске одного человека (обычно два).

2. Число минутных перерывов (обычно три).

3. Примерное время на доклад (обычно пятнадцать мин.), после которого жюри решает, дать еще время или передать слово оппоненту.

4. Можно ли оппоненту дополнять докладчика, если он не нашел пробелов в решении (обычно «нет»).

5. Какую разницу очков считать нечейной (обычно не больше трех).

6. Какой круг фактов и методов можно использовать без доказательства.

7. Можно ли пользоваться литературой и калькуляторами во время решения задач (обычно «да»).

8. Можно ли выходить к доске с записанным решением (обычно «да»).

НАЧАЛО БОЯ.

Когда время на решение задач истекло команда и жюри собираются вместе.

Целесообразно создать обстановку (расставить столы) для удобного общения членов команд и жюри (рис. 1).

Команда 1

Капитаны сообщают названия команд. На доске изображается таблица результатов.

Номер задачи

Очки команды

Вызов

Очки команды

Очки жюри

         

Существуют ограничения на общение участников, которые показаны на схеме (Рисунок 2: например, оппонент может общаться только с докладчиком и жюри, а капитан - только со своей командой и с жюри).

Примеры задач и игр для конкурса капитанов

1. Сколько существует трехзначных чисел?

2. На столе лежат 20 спичек, двое по очереди берут 1 или 2 спички. Побеждает тот, кто берет последнюю спичку.

3. Газету разорвали на 3 части, потом 1 из частей разорвали еще на 3 части, и так делали 40 раз. Сколько получилось частей?

4. Полный бидон молока весит 30 кг., а наполненный наполовину 15,5 кг. Сколько весит бидон?

5. Разрежьте квадрат на 5 прямоугольников, чтобы у соседних прямоугольников стороны не совпадали.

6. Найдите хотя бы 1 решение неравенства 0,01<x<0,011.

7. Сколько диагоналей в правильном семиугольнике?

8. В строке написано несколько минусов. Двое по очереди переправляют один или два соседних минуса на плюс. Выигрывает тот , кто переправит последний минус.

9. Замените звёздочки числами так , чтобы сумма любых трёх соседних чисел равнялась 20.

7, *, *, *, *, *, *, 9

10. Известно, что дробь

В*А*Р*Е*Н*Ь*Е

К*А*Р*Л*С*О*Н

Равно целому числу, где разные буквы обозначают разные цифры, а между цифрами стоит знак умножения. Чему равна дробь?

11. Три охотника варили кашу. Один положил 2 кружки крупы, второй - 1 кружку, а у третьего крупы не было. Они съели кашу поровну. Третий охотник и говорит: «Спасибо за кашу! У меня осталось 5 патронов, - и вот вам задача: как поделить патроны в соответствии с вашим вкладом?»

12. На озере росли лилии. Каждый день их число удваивалось, и на 20 день заросло всё озеро. На какой день заросла половина озера?

13. Есть 2 сковородки на каждой помещается 1 блин. Надо пожарить 3 блина с двух сторон. Каждая сторона блина жариться 1 минуту за какое наименьшее время можно это сделать?

14. Два мальчика хотели купить книгу. Одному из них не хватало 27 копеек, а второму - 1 копейки. Они сложили свои деньги, но денег всё равно не хватило. Сколько стоит книга?

15. Одна кастрюля вдвое выше другой, зато вторая вдвое шире первой. В какой из них больше войдет воды?

16. Шоколадка стоит рубль и еще пол шоколадки. Сколько стоит шоколадка?

Образцы задач математического боя для восьмых классов

1. Какое наименьшее число выстрелов всегда достаточно, чтобы попасть в четырехклеточный корабль при игре в морской бой?

2. Известно, что доля блондинов среди голубоглазых больше, чем доля блондинов среди всех людей. Что больше: доля голубоглазых среди блондинов или доля голубоглазых среди всех людей?

3. На сторонах произвольного многоугольника произвольным образом расставлены стрелки. Докажите, что число вершин, в которое входят 2 стрелки, равно числу вершин, из которых выходят 2 стрелки.

4. Докажите, что среднее арифметическое двух последовательных простых чисел не является простым числом.

5. На прямой отмечено 45 точек, лежащих вне отрезка АБ. Докажите, что сумма расстояния от этих точек до точки А не равна сумме расстояний от этих точек до точки Б.

6. Дано 100 положительных чисел. Известно, что произведение любых 7 из них больше 1. Докажите, что произведение всех чисел больше 1.

7. Путешественник отправился из родного города А в саамы удаленный от него город страны В, затем из В - в самый удаленный от него город С и т.д. Докажите, что если С не совпадает с А, то путешественник никогда не попадет домой.(Расстояние между городами различно).

8. В углах шахматной доски 3х3 стоят 4 коня: два белых (в соседних углах) и два черных. Можно ли за несколько ходов (конь ходит буквой «Г») поставить коней так, чтобы во всех соседних углах стояли кони разного цвета.

9. На стороне угла дана точка А. Постройте на этой же стороне точку М, которая одинаково удалена от точки А и от другой стороны угла.

10. По кругу расставлены 10 точек. Двое по очереди соединяют их отрезками. Начало 1 отрезка - в любой точке, а каждый следующий отрезок начинается из конца предыдущего. Проигрывает тот, кто не может провести новый отрезок (дважды проводить отрезок нельзя, а пересекать - можно). Предположим, что игроки не делают ошибок. Кто из них победит?

Ответы к задачам конкурса капитанов

1. 900. 2. Первый каждым ходом берет столько спичек, чтобы остаток делился на 3. 3. 81. 4. 1 кг. 5. см. Рисунок 3. 6. х=0,0105. 7. 14. 8. Первый ходит в центр, а затем ходит симметрично второму. 9. 7, 9, 4, 7, 9, 4, 7, 9. 10. 0. 11. Все патроны надо дать первому охотнику. 12. За 19 дней. 13. За 3 минуты. 14. 27 копеек. 15. В широкую войдет вдвое больше. 16. 2 руб.

Краткие решения задач математического боя

1. Будем располагать выстрелы по параллельным диагоналям с интервалом 3 клетки, начиная с диагонали А4 - Г1. Понятно, что четырехклеточному (крейсер) кораблю укрыться будет негде. Получаем, что 24 выстрела всегда достаточно. Покажем, что 24 выстрела необходимо. Для этого разместим на доске 24 крейсера без наложений. Кстати, мы заодно доказали, что на доске 10х10 нельзя разместить 25 крейсеров без наложений (иначе не хватило бы 24 выстрелов).

2. Обозначим ЧБ - число блондинов, ЧГ - число голубоглазых, ЧБГ - число голубоглазых блондинов, а ЧВ - число всех людей. Тогда по условию:


Страница: