Внеклассная работа по математике в школеРефераты >> Математика >> Внеклассная работа по математике в школе
2. (A1A2A3B1B2B3C1C2C3) (A3A4A5B3B4B5C3C4C5) (A6A7A8B6B7B8C6C7C8)=(A1A2A3A4A5A6A7A8)
(B1B2B3B4B5B6B7B8) (C1C2C3C4C5C6C7C8)(A3B3C3).
Т.е. A3B3C3=8. Аналогично - C1C2C3=8.
Произведение чисел в квадрате 66, стоящем на пересечении 3-8 столбцов и 3-8 строк равно 16, так как этот квадрат разбивается на 4 квадрата 33. В оставшемся уголке (на рисунке он заштрихован) произведение чисел равно 1/16, так как во всей таблице произведение равно 1. Но произведение чисел в закрашенном уголке можно также получить, перемножив числа первой и второй строк, первого и второго столбца и разделив всё это на A1A2B1B2. Отсюда A1A2B1B2=16.
(A1A2B1B2)( A3B3C3)( C1C2C3)=(A1A2A3B1B2B3C1C2C3)C3.
1688=2С3. Откуда С3=512, A3B3=8/512=1/64.
Ответ: 1/64.
3.
.
4. Пусть вписанный в первую окружность . Соответствующий ему центральный угол . Но вписан во вторую окружность, поэтому . - это угол между касательной BC и секущей AB, поэтому . Тогда по теореме о сумме углов треугольника, . Значит, - равнобедренный. AB=BC, что и требовалось доказать.
5. Каждому цвету поставим в соответствие один из остатков по модулю 4. Синий - 0, оранжевый - 1, фиолетовый - 2, зелёный - 3. Вместо хамелеонов будем рассматривать 2002 целых числа, стоящие по кругу. Операция смены цвета в новой трактовке будет равносильна прибавлению 1 к четырём последовательно стоящим числам. (При этом, если будет получаться число, большее 3, то оно заменяется на остаток от деления на 4.) В начальный момент времени по кругу стоят нули и нам требуется узнать, можно ли путём указанной операции сделать все числа, равные трём.
В начальный момент времени сумма равна 0 и на каждом шаге она может изменяться лишь на величину, кратную четырём, т.е. сумма всех чисел на каждом шаге будет делиться на 4. Поэтому 2002 тройки (которые в сумме дают 6006=41501+2) получить нельзя.
РЕШЕНИЯ. 11 КЛАСС.
1. Перенесём все слагаемые в левую часть.
.
2. ,
,
,
………
.
.
3. Пусть x - количество мальчиков, y - количество девочек. - стоимость сникерса, - стоимость марса (в копейках). Составим уравнение.
.
.
.
. .
- целое положительное число (т.к. по условию x>y), b и a - также целые числа, так как копейка - самая мелкая денежная единица. Следовательно (b-a) - это положительный делитель 100. Возможные варианты: 1, 2, 4, 5, 10, 20, 25, 50 и 100. Такие же варианты будут и для разности x-y.
Ответ: мальчиков может быть больше, чем девочек, на 1, 2, 4, 5, 10, 20, 25, 50 и 100.
Пусть O - точка пересечения диагоналей параллелограмма ABCD, она же является точкой пересечения диагоналей ромба AKCM.
AD=BC, тогда, по условию, 2AD=BD. AD=BD/2=OD. - равнобедренный. Пусть R - середина отрезка OA. Тогда медиана DR является также высотой. . по свойству диагоналей ромба. Значит, . Пусть T -точка пересечения DR и AB. По теореме Фалеса, ; . Следовательно, .
Поставим в соответствие каждому цвету остаток по модулю 3: красному - 0, жёлтому - 1, зелёному - 2. Тогда операция нажатия на кнопку будет равносильна прибавлению единицы к трём числам, находящимся в вершинах выбранной грани (если при этом где-либо будет получаться тройка, то вместо неё будет записываться - 0, т.е. остаток от деления на 3). А вопрос задачи будет звучать следующим образом: можно ли все числа в вершинах тетраэдра сделать равными единице? Таким образом, сумма чисел в вершинах тетраэдра будет изменяться каждый раз на слагаемое кратное трём. А т.к. в начальный момент она была равна 0, то в любой момент времени сумма кратна трём. Поэтому единицы в вершинах тетраэдра получить нельзя, ведь в этом случае сумма всех чисел равна 4, а 4 на 3 нацело
3.4 Математический бой . схема провидения.
Схема матбоя. Матбой - это соревнование двух команд в решении нестандартных задач , подобранных жюри, в умении рассказывать решение у доски и в умении проверять чужие решения.
Команды получают одинаковые задачи и решают их в разных помещениях в течении заданного времени. Таким образом, матбой состоит из двух частей: решение задач и собственно боя.
Чтобы определить, в каком порядке команды будут рассказывать решения задач, команды делают вызовы: одна называет номер задачи, решение которой она желает услышать, другая сообщает, принят ли вызов. Обычно команды вызывают друг друга по очереди.
Если вызванная команда хочет отвечать, то она выставляет докладчика, а другая команда - оппонента для проверки решения. Командам могут даваться минутные перерывы для помощи докладчику или оппоненту.
Если вызванная команда отказалась, то она вызвавшая команда должна сама рассказать решение задачи. При этом если оппонент докажет, что у докладчика нет решения, то вызов считают некорректным. Тогда вызвавшая команда должна повторить вызов.