Ультразвуковая экстракция полисахаридов льна
внутридиффузионной – скорость процесса определяется скоростью диффузии в порах вещества;
внутренней кинетической – при условии, что пористый материал обладает относительно низкой химической активностью, а концентрация растворителя в порах равна концентрации в объеме;
внешней кинетической – реагент имеет относительно высокую химическую активность, вследствие чего реакция проходит на поверхности пористого материала при условии, что скорость реакции лимитирует скорость всего процесса (при малой пористости вещества) [4].
Эффективность процесса экстрагирования зависит от большого числа параметров, например, от формы нахождения извлекаемого компонента, характера взаимодействия твердого тела с извлекаемым компонентом, различия в избирательной способности экстрагента по отношению к компонентам, содержащимся в твердой фазе, от структуры пористого материала [5].
1.2.2 Экстрагирование биологически активных веществ из растительного сырья
Главная особенность процесса экстрагирования из пищевого и растительного сырья состоит в том, что физические свойства сырья в значительной степени изменяются в процессе экстрагирования, и это оказывает существенное влияние на все стадии процесса.
Экстрагирование БАВ – главная, но и наиболее продолжительная стадия переработки сырья. Сложность изучения процессов твердофазного экстрагирования обусловлена, во-первых, неопределенностью изменения структуры твердой фазы во время извлечения из нее целевых компонентов, во-вторых, полидисперсностью твердой фазы. Кроме того, возникают определенные трудности при выборе избирательного экстрагента [1].
На большинстве заводов экстрагирование ведется малоэффективными методами, такими как: мацерация, перколяция, выпаривание, настаивание, отваривание [4]. Мацерация представляет собой обычное вымачивание, при котором происходит разрушение клеточных стенок растительного сырья и растворение экстрагируемых веществ. Длительность процесса достигает 14 дней. При перколяции, или просачивании, растворитель просачивается через слой измельченного сырья и «вымывает» целевые компоненты. Основные физические явления, обуславливающие процесс перколяции, - гравитация, вязкость, адгезия, трение, осмос, поверхностные, капиллярные явления и растворение [5].
Но все используемые в данное время методы экстракции довольно неэкономичны, что приводит к их ограниченному применению.
1.2.3 Интенсификация экстракционных процессов под действием ультразвука
Применение различных электрофизических методов (в частности, ультразвука) позволило по-новому построить технологический процесс, значительно ускорить его, повысить выход и улучшить качество продукции. Доказана целесообразность широкого применения ультразвука не только в пищевой и фармацевтической промышленности, но и для воздействия на различные технологические процессы [6].
Большое количество исследований в области ультразвуковой интенсификации различных гомо- и гетерогенных процессов посвящено выделению из смесей, сплавов необходимых веществ, а также очистке вод, почв и воздуха. Так, описаны ультразвуковая экстракция диметионата [7], экстракция антител из клеток [8], экстракция гербицидов из почвы с использованием ультразвука [9], эндоскопическая экстракция жировой массы с помощью ультразвукового скальпеля [10], жидкофазная экстракция полициклических ароматических углеводородов из загрязненных вод с помощью ультразвука [11], экстракция полициклических ароматических углеводородов из лесных почв [12]. Ультразвуком также выделяют из микрооранизмов аминокислоты и белки с сырным вкусом для придания вкусовых качеств различным сырам [13], производят выделение из клеток фермента эндонуклеазы [14], осуществляют твердо-жидкостную ультразвуковую экстракцию селена из биологических образцов [15].
Показано, что ультразвуком из сырья растительного происхождения в диапазоне частот 19 кГц – 1 МГц возможно извлекать практически все известные соединения, продуцируемые растениями. Кинетика ультразвуковой экстракции биологически активных веществ зависит от принадлежности к определенной химической группе, а степень извлечения растет в ряду: масла, алкалоиды, фуранохромы, флавоноиды, сапонины, гликозиды [16]. При использовании ультразвука наблюдается не только значительное ускорение процесса, но и увеличение по сравнению с другими способами экстрагирования выхода продукта [17].
Преимущества ультразвуковой экстракции по сравнению с другими способами:
минимальное применение ручного труда;
сокращение времени технологических процессов.
Однако недостатком этого метода является то, что ультразвуковое воздействие, используемое для обработки растительного сырья является, очень мощным и достаточно длительным. Проведение процесса в этих условиях вызывает мощный разогрев раствора, и, следовательно, разрушение некоторых классов БАВ [2].
Можно выделить несколько основных параметров, которые собственно и делают процесс ультразвукового экстрагирования более эффективным по сравнению с традиционными методами экстракции. К числу факторов, способствующих интенсификации, относятся:
увеличение скорости обтекания;
ускорение пропитки твердого тела жидкостью;
увеличение коэффициента внутренней диффузии;
кавитационный эффект, влияющий на структуру пористых тел и приводящий к появлению микротрещин;
свойства звуковых и ультразвуковых колебаний предотвращать экстракцию пористых частиц твердыми инертными примесями [17].
Под действием ультразвуковых колебаний происходит более быстрое и активное разрушение внутриклеточных тканей растительного сырья, что приводит к интенсификации процесса экстракции и дает возможность увеличить содержание биологически активных соединений в растворе.
В акустическом поле, наряду со снятием диффузионных ограничений, большое значение для интенсификации процесса экстракции имеют также другие процессы. Одним из таких важных процессов является диспергирование, другим - нарушение мицеллярной структуры экстрагируемого вещества как в воде, так и в органических растворах.
Показано действие акустических колебаний на увеличение межфазной удельной поверхности реагирующих компонентов. Диспергирование при этом идет как за счет разрушения частичек твердой фазы, так и за счет поверхностного трения между твердыми и жидкими фазами. Уменьшается толщина диффузионного пограничного слоя, увеличивая активацию молекул, в результате чего повышается количество результативных соударений молекул реагирующих компонентов. В результате использования вихревой экстракции в процессах экстракции веществ из корня валерианы привело к заключению, что сочетание механического воздействия (размол, разрыв клеток при ультразвуковой обработке) с турбулизацией среды по обе стороны клеточной перегородки положительно сказывается на изменении внутреннего сопротивления.
При экстрагировании растительного сырья рекомендуется предварительное замачивание, длительность которого зависит от скорости вытеснения воздуха из клетки. Однако многие капилляры заканчиваются в пачках и фибриллах, не выходя наружу. Ультразвук, создавая звукокапиллярный эффект, не только ускоряет вытеснение таких пузырьков воздуха, но и создает условия для растворения его в жидкостях. На концах капилляра возникает разность давлений в результате турбулентного движения пограничного слоя при наложении ультразвука. Протекая с большой скоростью мимо отверстия капилляра, слой проявляет отсасывающий эффект, то есть здесь формируется зона с пониженным давлением [2].