Тонкослойная хроматография и ее роль в контроле качества пищевых продуктов
Содержание
Введение
Глава 1. Физико-химические основы тонкослойной хроматографии
1.1 Классификация хроматографических методов анализа
1.2 Основы метода ТСХ
1.3 Распределительная хроматография на бумаге
1.4 Тонкослойная хроматография
1.4.1 Сорбенты
1.4.2 Растворители
Подбор подвижной фазы (системы) проводится по следующим правилам:
1.4.3 Подготовка пластин
1.4.4 Техника нанесения исследуемых растворов
1.4.4 Хроматографирование
1.4.5 Восходящая тонкослойная хроматография
1.4.6 Нисходящая тонкослойная хроматография
1.4.7 Горизонтальная тонкослойная хроматография
1.4.8 Радиальная тонкослойная хроматография
1.4.9 Сушка пластин
1.4.10 Идентификация разделенных веществ
1.4.11 Физические методы
1.4.12 Значение Rf
1.4.13 Цветные реакции
1.4.14 Сравнение со свидетелем
1.4.15 Физико-химические методы идентификации
1.4.16 Методы количественного анализа
1.4.17 Способы проведения ТСХ
Глава 2. Контроль качества пищевых продуктов посредством метода ТСХ
2.1 Определение ДДТ, ДДЭ, ДДД, альдрина, дильдрина, гептахлора, кельтана, метоксихлора, эфирсульфоната и других ядохимикатов в продуктах питания хроматографией в тонком слое
2.2 Определение о,о-диэтил-8-(6-хлорбензоксазолинил-3-метил)-дитиофосфата (фозалона) в яблоках методом тонкослойной хроматографии
Глава 3. ТСХ – оборудование
3.1 Оборудование фирмы НТЦ ЛЕНХРОМ для инструментальной ТСХ
3.1.1 Портативный набор для ТСХ
3.1.2 Базовый набор для ТСХ
3.1.3 Оборудование для проведения ВЭТСХ анализов
3.1.4 Пластины многократного пользования для высокоэффективной и аналитической ТСХ
3.1.5 Контроль эффективности разделения
3.1.6 Хроматографические камеры
3.1.7 Постхроматографическая дериватизация
3.1.8 Оборудование для нанесения образцов
3.1.9 Приборы и оборудование для высокоэффективной тонкослойной хроматографии
Литература
Введение
Хроматография, обязательно включающая процесс разделения смесей веществ в динамическом режиме, охватывает не только достаточно обширный раздел аналитической химии, но и лежит в основе ряда технологических процессов. В связи с этим, хроматография включает два основных направления: информационное и технологическое. Первое обеспечивает информацию о качественном и количественном составе и физико-химических свойствах исследуемых объектов, второе — получение материальных продуктов.
Как способ анализа хроматография является частью той группы методов, которая ввиду сложности исследуемых объектов включает предварительное разделение исходной сложной смеси на относительно простые, например, дистилляцией, зонной плавкой, экстракцией, диффузией или комбинацией этих методов. Среди них хроматографические методы обладают наиболее эффективными разделительными возможностями за счет использования большого числа типов межмолекулярных взаимодействий. Стадия разделения в хроматографической колонке или слое сорбента обеспечивает получение относительно простых смесей, анализируемых затем обычными химическим, физико-химическим или физическим методами анализа или специально созданными для хроматографии методами или приемами.
Тонкослойная хроматография (ТСХ, TLC) - один из наиболее используемых методов хроматографического анализа, но наименее популяризируемый.
Несмотря на существовавшие до недавнего времени существенные недостатки, она широко используется для качественного анализа смесей, в основном, за счет дешевизны и скорости получения результатов. [1]
Тонкослойная хроматография имеет множество возможностей и преимуществ, и может быть не только качественным методом анализа. И в то же время это – метод, требующий определенные навыки и знания, без которых он не может существовать.
Глава 1. Физико-химические основы тонкослойной хроматографии
1.1 Классификация хроматографических методов анализа
Разнообразные варианты хроматографии [1] укладываются в относительно простую схему классификации в зависимости от используемой подвижной фазы и характера межмолекулярных взаимодействий. Поскольку характер взаимодействий может быть очень различным – от чисто ситового эффекта к физической сорбции и далее к хемосорбции, то почти не существует объектов, для разделения которых не удавалось бы найти подходящего сорбента и систем растворителей. Области применения основных вариантов хроматографии в зависимости от молекулярной массы исследуемых соединений показаны на рис. 1.
В области молекулярного анализа органических соединений хроматография преобладает над другими методами разделения, не заменяя их.
Классификация вариантов хроматографии приведена в таблице 1 и на рис. 2. Следует иметь в виду, что в аналитической практике преобладает использование варианта проявительной хроматографии, когда подвижная фаза подается в хроматографическое устройство непрерывно, а разделяемая проба — периодически.
При всем разнообразии вариантов хроматографии практически всегда реализуется общая схема процесса, представленная на рис. 3. Подвижная фаза (газ-носитель или жидкость) непрерывно пропускается через слой гранулированного сорбента, засыпанного в колонку.
В этот поток дозирующим устройством вводится импульсно анализируемая смесь, которая должна быть газообразной или испаряться в дозаторе в случае газовой хроматографии, или растворяться в подвижной фазе в случае жидкостной. Перемещаясь потоком подвижной фазы по колонке, анализируемая смесь разделяется на составляющие ее компоненты: компоненты, сорбирующиеся хуже на данном сорбенте, двигаются быстрее и вымываются из колонки раньше, чем сорбирующиеся лучше.
Расположенный после колонки детектор фиксирует наличие в потоке компонентов; его сигнал, обычно пропорциональный концентрации или количеству компонента, записывается на самопишущем потенциометре (регистраторе) в виде хроматограммы — графика зависимости концентрации (количества от времени). Хроматограмма при полном разделении компонентов состоит из системы колоколобразных кривых, называемых пиками: каждый пик относится к одному или нескольким компонентам и соответствует возрастанию, а затем снижению концентрации в потоке подвижной фазы.