Расчет тарельчатой ректификационной колонны для разделения бинарной углеводородной смеси бензол-толуол
Ø
(2.50)
(2.51)
Ø Расчет средних массовых расходов пара для верхней и нижней частей колонны:
(2.52)
(2.53)
2.6. Определение скорости пара и диаметра колонны
Эффективность работы тарельчатых колонн в значительной степени зависит от скорости пара в свободном сечении колонны. Эта скорость зависит от физико-химических свойств взаимодействующих фаз (плотность, вязкость, поверхностное натяжение и др.) и конструктивных особенностей колонны. Оптимальная величина скорости может быть установлена в каждом отдельном случае только опытным путем. В общем случае предельно допустимая скорость пара в колонне должна быть несколько меньше скорости, соответствующей явлению «захлебывания» колонны, когда восходящий поток пара начинает препятствовать стеканию жидкости по тарелкам. В колоннах, работающих при атмосферном давлении, скорость пара обычно принимают 0.3–0.6 м/с; эта скорость непосредственно связана со скоростью в отверстиях тарелок, которую следует выбирать в пределах 2–6 м/с.
Скорость паров в колоннах может быть повышена при увеличении расстояния между тарелками или применении специальных устройств в виде отбойников, позволяющие уменьшить сепарационный объем между тарелками.
При больших скоростях происходит увеличение потоком пара жидкости с нижележащих тарелок на тарелки, лежащие выше, т.е. механический унос жидкости, и слияние отдельных пузырьков пара в струю, и в результате этого уменьшается поверхность контакта фаз и длительность контакта.
Расчет рабочей скорости пара в верхней и нижней частях колонны по уравнению:
а) в верхней части колонны:
(2.54)
б) в нижней части колонны:
(2.55)
где С – коэффициент, зависящий от конструкции тарелок, расстояния между тарелками, рабочего давления в колонне, нагрузки колонны по жидкости.
Рис. 2.19. Значения коэффициента С: А, Б – колпачковые тарелки с круглыми колпачками;В – ситчатые тарелки.
Диаметр колонны определяется по уравнению:
а) в верхней части колонны:
(2.56)
б) в нижней части колонны:
(2.57)
Скорость пара в колонне при стандартном диаметре:
а) в верхней части колонны:
(2.58)
б) в нижней части колонны:
(2.59)
Средняя скорость пара рассчитывается по формуле:
(2.60)
2.7. Гидравлическое сопротивление тарельчатых колонн
При конструировании тарельчатых колонн следует учитывать гидравлическое сопротивление, в результате которого возникает значительная разность давлений у основания и вершины колонны. Перепад давлений будет тем больше, чем больше число тарелок в колонне и чем выше уровень жидкости на каждой тарелке. Основные сопротивления прохождения паров возникают на входе и на выходе из паровых патрубков и через прорези колпачков (местные сопротивления). Следует также учитывать потери на преодоление гидростатического давления столба жидкости на каждой тарелке. Обычно сопротивление колпачковой тарелки составляет 25–50 мм водного столба в условиях работы при атмосферном давлении и несколько ниже при работе под вакуумом.
Гидравлическое сопротивление тарелок:
(2.61)
Гидравлическое сопротивление сухой тарелки в верхней и нижней частях колонны: а) в верхней части колонны:
(2.62)
б) в нижней части колонны:
, где (2.63)
ζ – коэффициент сопротивления, числовое значение которого можно принимать равным от 1.1 до 2.0;
ω0 – скорость пара в отверстиях тарелки в .
Сопротивление, обусловленное силами поверхностного натяжения:
, где (2.64)
σ – поверхностное натяжение в ;
d0 – диаметр отверстий тарелки в .
Объемный расход жидкости в верхней и нижней частях колонны:
а) в верхней части колонны:
(2.65)
б) в нижней части колонны:
(2.66)
Высота слоя над сливной перегородкой в верхней и нижней частях колонны:
а) в верхней части колонны:
(2.67)
б) в нижней части колонны:
, где (2.68)
Lc – периметр слива;
κ=ρпж/ρЖ – отношение парожидкостного слоя к плотности жидкости, принимается равным 0.5
Высота парожидкостного слоя на тарелке в верхней и нижней частях колонны:
а) в верхней части колонны:
(2.69)
б) в нижней части колонны:
, где (2.70)
hпер – высота переливного порога
Сопротивление парожидкостного слоя на тарелке в верхней и нижней частях колонны:
а) в верхней части колонны:
(2.71)
б) в нижней части колонны:
(2.72)
2.8. Расчет числа действительных тарелок графоаналитическим методом (построением кинетических линий)
Эффективность тарелки по Мэрфи:
(2.73)
(2.74)
(2.75)
, где (2.76)
Ey – локальная эффективность по пару;
e – межтарельчатый унос жидкости;
θ – доля байпасирующей жидкости;
S – число ячеек полного перемешивания;
m – коэффициент распределения компонента по фазам в условиях равновесия;
λ=m(R+1)R – фактор массопередачи для укрепляющей части;
λ=m(R+1)/(R+f) – фактор массопередачи для исчерпывающей части.