Общая и неорганическая химия
Рефераты >> Химия >> Общая и неорганическая химия

С другой стороны, для данного температурного интервала ускорение реакции будет тем сильнее, чем больше ее энергия активации. Так, если энергия активации реакции мала, то такая реакция идет очень быстро, и при повышении температуры на 10° С ее скорость почти не изменяется. Для таких реакций температурный коэффициент намного меньше 2. Для реакций же с большой энергией активации, которые при невысоких температурах идут медленно, ускорение при повышении температуры на 10° С может значительно превысить 4-кратное.Например, реакция диоксида углерода со щелочным раствором с образованием гидрокарбонат-иона (СО2 + ОН® НСО3–) имеет энергию активации 38,2 кДж/моль, поэтому при повышении температуры, например, от 50 до 60° С эта реакция ускорится всего в 1,5 раза. В то же время реакция распада этилбромида на этилен и бромоводород (С2Н5Вr ® С2Н4 + НВr) с энергией активации 218 кДж/моль ускорится при повышении температуры от 100 до 110oС в 6,3 раза (правда, в этом интервале температур реакция идет очень медленно). Кинетика реакции атомов водорода с этаном H + C2H6 ® H2 + C2H5 была изучены в широком температурном интервале – от 300 до 1100 К (27–827° С). Для этой реакции Eа = 40,6 кДж/моль. Следовательно, повышение температуры на 10° вызовет увеличение скорости реакции в 1,7 раза в интервале 300–310 K и только в 1,04 раза в интервале 1090–1100 K. Так что при высоких температурах скорость этой реакции практически не зависит от температуры. А для реакции присоединения атома водорода к двойной связи H + C2H4 ® C2H5 энергия активации мала (Eа = 3,4 кДж/моль, так что ее скорость слабо зависит от температуры в широком температурном интервале. И только при температурах намного ниже 0° С начинает сказываться наличие активационного барьера.

Подобных примеров можно привести множество. Очевидно, что правило Вант-Гоффа противоречит не только уравнению Аррениуса, но и многим экспериментальным данным. Откуда же оно взялось и почему нередко выполняется?Если в приведенном выше математическом выражении для правила Вант-Гоффа подставить вместо скоростей v1 и v2 для данной реакции их зависимости от температуры, в соответствии с уравнением Аррениуса, то после сокращения предэкспоненциальных множителей получим следующее выражение: g = vT +10/vT = е–Еа/R(Т+10)/е–Еа/RТ = е(Еа/R)[1/Т – 1/(T+10)]. Логарифмироване этого уравнения дает: lng = (Eа/R)[1/T – 1/(T + 10)], откуда Еа = Rlng T(T + 10)/10 = 0,83lngT(T + 10). Энергия активации не является функцией температуры, эта зависимость нужна лишь для удобства последующего анализа. Последнее уравнение – это уравнение параболы, в котором физический смысл имеют только положительные значения. Соответствующая диаграмма ограничена двумя ветвями параболы: при g = 2 получаем Еа = 0,58Т(Т + 10), при g = 4 получаем Еа = 1,16Т(Т + 10). К тем же формулам приходим и при использовании десятичных логарифмов. Соответствующие графики двух парабол, для значений g 2 и 4, приведены на рисунке. Их физический смысл заключается в том, что области выполнения правила Вант-Гоффа соответствует только область между параболами. Таким образом, существуют только определенные соотношения между энергией активации реакции и температурой ее проведения, при которых правило Вант-Гоффа выполняется. Ниже нижней ветви температурный коэффициент g < 2, тогда как выше верхней ветви g > 4. Правило Вант-Гоффа: при повышении Т на скорость хим. реакции увеличивается в 2-4 раза. Математически это правило можно записать: , , - температурный коэффициент хим. реакции. Правило Вант-Гоффа является приближённым и его обычно используют для приблизительно оценки скорости при изменении температуры. Более точным является уравнение Аррениуса, по которому:. Они могут быть вычислены по значению констант скорости при 2-х различных Т. При : (1). При : (2). Вычитая из (1) (2) получаем . Отсюда можно выразить А. Зная А, по уравнению (1) или (2) вычисляют В. Уравнение Аррениуса может быть получено т/д-им выводом из уравнения изобары (изохоры) хим. реакции. Опуская индексы, характеризующие условия протекания реакции, это уравнение записывается: , , где и - константы скорости прямой и обратной реакции. Учитывая эти уравнения можно записать: . Представим тепловой эффект реакции Q как разность 2-х энергетических величин: . Тогда последнее уравнение можно записать в виде: . С точностью до некоторой постоянной величины можно записать: , . Опыт показывает что . Отбрасывая индексы, последнее уравнение записывается: (1), где К – константа скорости хим. реакции. Энергетическая величина Е в этом уравнение называется энергией активации. Полученное уравнение описывает зависимость К хим. реакции от температуры. Разделив переменные и проинтегрировав, получим:

, (2).

Уравнение (2) по форме походит на уравнение Аррениуса, интегрируя (2) получим:

, (3).

Уравнение используют либо для вычисления энергии активации по известным константам скорости при двух температурах, либо для вычисления константы скорости реакции при неизменной температуре, если известна энергия активации. Для большинства хим. реакций энергия активации определяется в пределах . Физический смысл энергии активации раскрывается в теории химической кинетики, её можно определить как некоторый избыток энергии по сравнению со средним значением для денных условий, которыми должны обладать молекулы чтобы вступить в хим. реакцию. Уравнение (2) чаще представляют в виде: . При этом называют предэкспоненциальным множителем. Связь энергии активации с тепловым эффектом можно проиллюстрировать с помощью представлению о энергетическом барьере, который разделяет начальное и конечное состояние системы. I и II – уровни энергии вещ-в исходных и продуктов реакции. - энергия активации прямой реакции. - энергия активации обратной реакции. Избыток энергии реагирующих молекул, названный энергией активации, необходим для преодоления отталкивания электронных облаков взаимодействующих молекул при их столкновении, и для разрыва старых связей молекул. Уравнение Аррениуса справедливо в области невысоких температур; при достаточно высоких температурах константа скорости перестаёт зависеть от температуры.


Страница: