Методы определения концентрации растворённого кислорода в воде
Рефераты >> Химия >> Методы определения концентрации растворённого кислорода в воде

Точность прямого метода Винклера и его возможные ошибки.

На протяжении всей первой половины 20-го века в ходе лабораторных и полевых работ был собрана большая экспериментальная база по результатам определения кислорода методом Винклера. Были обнаружены расхождения в результатах определений растворенного кислорода в одних и тех же водах по методам, различающимся только деталями, например способом стандартизации раствора тиосульфата, концентрацией реагентов, способом титрования (всего раствора или аликвоты) и др. В большей мере эта проблема – проблема стандартизации метода Винклера, проявлется в многообразии таблиц растворимости кислорода. Различия в табличных значениях растворимости кислорода до 6% способствовали проведению исследований по принципиальным вопросам методической основы и методическим погрешностям метода Винклера. В результате таких работ был сформулирован ряд потенциальных источников принципиальных ошибок метода в чистых водах:

окисление иодида кислородом воздуха

улетучивание молекулярного иода

содержание растворенного кислорода в добавляемых реактивах в процедуре фиксации кислорода

примесь молекулярного иода в иодиде

несовпадение точки конца титрования и точки эквивалентности

малая устойчивость растворов тиосульфата натрия и соответственно необходимость частой стандартизации

ошибки при стандартизации тиосульфата натрия

трудность титрования малых количеств иода

использование крахмала в качестве индикатора: его нестойкость и уменьшение чувствительности с повышением температуры

Остановимся подробнее на наиболее значимых ошибках. Окисление иодида кислородом ускорется с ростом кислотности. Уменьшить влиние этого процесса можно регулируя рН среды. Рекомендуемое значение кислотности составлет рН=2–2.5. Увеличение рН более 2.7 опасно, т. к. там уже возможен процесс гидратообразования марганца. Одновременно с окислением иодида возможен также и процесс улетучивания йода. Образование комплексной частицы J3- в условиях избытка иодида (см. схему метода Винклера) позволет связать практически весь молекулярный йод в растворе. понятно, что вводя раствор соли марганца и щелочной реагент (щелочь+иодид), мы тем самым вносим неучтенное количество кислорода, растворенного в этих реактивах. Поскольку в различных вариантах метода Винклера использовались реактивы различных концентраций, то использовать в расчетах какую-либо одну поправку было нельзя. Приходилось для каждого метода использовать свои собственные расчетные или экспериментальные значения привнесенного с реактивами кислорода. Обычно эти значения находились в интервале 0.005–0.0104 ррм.

К середине 60-х годов назрела необходимость в единой процедуре определения растворенного кислорода. Это отчасти было обусловлено большим разнообразием химических методик, развитием инструментальных методов и необходимостью их взаимного сравнения. На основе опубликованной работы, Карпентер сформулировал процедуру определения кислорода по Винклеру. В этом варианте были учтены практически все потенциальные ошибки выявленные раннее. В совместной работе Кэррит и Карпентер дополнили эту методику поправкой на учет растворенного в реактивах кислорода (0.018 мл/л). Экспериментально измеренная в работе величина несколько отличалась и составляла 0.011 мл/л.

При определении точностных характеристик химического метода Винклера исследователи столкнулись с проблемой точного задания концентрации растворенного кислорода. Для этого использовались насыщение воды воздухом или кислородом при заданной температуре, стандартная добавка раствора кислорода в обезкислороженную воду, электрохимическое генерирование кислорода, использование альтернативных инструментальных методов определения кислорода. Не смотря на долгую историю этой проблемы и многочисленные работы, окончательное решение пока не найдено и вопрос по-прежнему остается открытым. Наиболее популярным способом задания концентрации кислорода в воде был и остается до сих пор – процедура насыщения воды кислородом воздуха при фиксированной температуре. Однако отсутствие единообразия процедуры (объем раствора, условия перемешивания, способ и скорость продувания кислорода) приводит к значительным ошибкам, достигающим 2%. В большей мере это проявлялось при работе в области меньше 5 мгО2/л.

Опираясь на высокоточное приготовление растворов кислорода, внесением стандартной добавки в обезкислороженую воду, Карпентеру удалось достигнуть правильности 0.1% и воспроизводимости 0.02% на уровне 5 мгО2/л для варианта метода Винклера с фотометрическим титрованием. В Таблице 1 показана погрешность классического варианта метода Винклера на различных уровнях концентрации растворенного кислорода. Таблица 1 составлена по опубликованным результатам полевых и лабораторных определений.

Таблица 1. Погрешность метода Винклера в чистых водах

мгО2/л

погрешность

0.05

~30%

0.2–0.3

10–20%

0.8–1.7

3–5%

3 – …

~1%, но при тщательной работе возможно снижение до 0.1%.

Другим важным параметром, характеризующим возможности метода является нижняя граница определения. В литературе цитируется два значения нижней границы: ~0.05 и ~0.2 мгО2/л. Понятно, что предел обнаружения может определяеться следующими критериями:

нарушение стехиометрии реакций, лежащих в химической основе метода Винклера

чувствительность йод-крахмальной реакции

концентрацией используемого раствора тиосульфата и разрешающяя способность бюретки

В работе Поттера показано, что даже на уровне 0.0007 (!) мгО2/л стехиометрия основополагающих реакций сохраняется. В этой же работе говорится, что основной причиной, определяющей нижний предел является чувствительность йод-крахмальной реакции, которая оценивается как ~2·10-6Н (0.02–0.05 мгО2/л) [27, 29, 42, 43]. Таким образом можно сказать, что уровень 0.05 мгО2/л – это нижний предел обнаружения, а уровень 0.2 мгО2/л можно трактовать, как нижний предел метода (или значимости определения), т.е. тот уровень, на котором погрешность достигает 10–20% и более.

Иодометрический метод

ИСО 5813 устанавливает иодометрический метод определения растворенного в воде кислорода (метод Винклера, модифицированный для исключения некоторых помех).

Иодометрический метод применим для всех типов вод, свободных от мешающих веществ и содержащих растворенный кислород в концентрации более чем 0,2 мг/л вплоть до двойного насыщения кислородом (приблизительно 20 мг/л). Легко окисляемые органические вещества, такие как танины, гуминовые кислоты и лигнины, оказывают мешающие влияния. Окисляемые соединения серы, такие как сульфиды и тиомочевина, также оказывают мешающее влияние. В присутствии этих веществ предпочтительно использовать метод электрохимического датчика по ИСО 5814.


Страница: