Методы определения концентрации растворённого кислорода в воде
По значению оптической плотности находят содержание кислорода по калибровочному графику.
Люминесцентный метод
Сущность люминесцентного метода заключается в следующем. Энергия, приобретаемая веществом, когда оно поглощает электромагнитное излучение, обычно превращается в тепло, но в некоторых случаях большая часть энергии может обратно излучаться в виде флуоресценции или фосфоресценции. Флуоресценция часто угасает (т.е. ее интенсивность ослабевает) в присутствии кислорода. Степень угасания зависит от возможности столкновения молекул кислорода с флуоресцирующими молекулами в их возбужденном состоянии, и та энергия, которая бы излучалась в виде флуоресценции, передается молекуле кислорода.
Затухание, как флуоресценции, так и фосфоресценции в первом приближении подчиняется экспоненциальному закону:
где I0 и I – интенсивность свечения в начальный момент и через некоторое время t соответственно; τ – среднее время жизни излучающей молекулы.
Концентрацию кислорода определяют при смешивании пробы, с раствором флуоресцирующего вещества, подверженного возбуждающему излучению, а также измерением интенсивности флуоресценции. Однако помимо практических трудностей такой способ отличается большой инерционностью.
Чувствительность определения концентрации молекулярного кислорода увеличивается при сочетании кинетического метода анализа (метод анализа состава, в котором используется зависимость между скоростью реакции и концентрацией реагирующих веществ) и люминесцентного. Такое сочетание методов анализа получило название люминесцентно-кинетического. Согласно этому методу концентрацию молекулярного кислорода определяют по интенсивности люминесценции. Большой квантовый выход люминесценции и высокая чувствительность современной светорегистрирующей аппаратуры позволяют наблюдать за процессом достаточно долго.
Способность фосфоресцировать обнаружена у большинства органических соединений. Взаимодействие возбужденных молекул кислорода с такими веществами уменьшает концентрацию возбужденных молекул кислорода и приводит к тушению наблюдаемой фосфоресценции, т.е. интенсивность фосфоресценции является функцией концентрации возбужденных молекул кислорода. Минимальная концентрация кислорода, которую определяют при тушении кислородом фосфоресценции адсорбатов трипафлавина на силикагеле, составляет ≈1,2·10-3 мкг/л.
Для определения концентрации молекулярного кислорода люминесцентным методом перспективно использование радиолюминесценции – свечения некоторых веществ под действием ядерного излучения. Эффект тушения радиолюминесценции в 102–103 раз больше эффекта тушения флуоресценции.
В основе радиолюминесцентного метода лежит явление тушения радиолюминесценции вводимыми в жидкий люминофор веществами. Кислород при растворении в люминофоре понижает выход радиолюминесценции на 20–35%, а при удалении его вакуумированием или пропусканием аргона радиолюминесценция полностью восстанавливается. Люминофоры, содержащие нафталин, обладают повышенной чувствительностью к молекулярному кислороду. Значения коэффициента тушения радиолюминесценции кислородом в зависимости от состава люминофора приведены в таблице. Пробу смешивают с люминофором и помещают в кювету до установления постоянных показаний интенсивности радиолюминесценции, затем пропускают аргон до полного вытеснениякислорода. Коэффициент тушения К находят как отношение K = N0/N1 (N1 – отсчет пробы, a N0 – отсчет после пропускания аргона).
Люминофор |
Коэффициент тушения | |
Без нафтолина |
10% нафтолина | |
0,4% n-терфенил |
1,7 |
94 |
0,4% дефинилоксазол |
2,1 |
1,6 |
0,4% антрацен |
1,3 |
1,3 |
0,4% дефинилоксазол + 0,01% дефинилоксазолилбензол |
1,9 |
1,7 |
0,4% n-терфенил +0,01% дефинилоксазолилбензол |
1,5 |
66 |
В работе М.А. Константиновой-Шлезингер описан метод определения малых концентраций кислорода в воде. В качестве реагента использован адреналин. Этот реагент в щелочном растворе не флуоресцирует.
Малейшие следы кислорода вызывают разгорание яркой желто-зеленой флуоресценции. В отсутствие кислорода наблюдается едва заметная флуоресценция молочно-синего цвета.
Раствор щелочи для проведения этой реакции рекомендуется брать 24–25%-ным. При меньшей концентрации щелочи реакция не останавливается на первой стадии окисления адреналина и вновь может образовываться нефлуоресцирующий продукт, что ухудшает воспроизводимость метода. Метод позволяет определять кислород в воде в количестве около 2 мкг в 1 мл.
Для обнаружения следов кислорода использовали гашение флуоресценции некоторых красителей, сорбированных силикагелем. Из числа испытанных красителей лучшие результаты были получены при применении трипафлавина в количестве 0,025 – 0,005 ммоль на 10 г. предварительно очищенного силикагеля. Указывается, что несколько видоизмененный метод Г. Каутского и А. Хирша позволяет обнаруживать 0,00007 мкг кислорода.
Датчик LDO для измерения концентрации кислорода люминесцентным методом:
Датчик Lange LDO включает два основных компонента (см. рис. 2):
1) Крышка датчика со слоем люминофора, нанесенным на прозрачную подложку.
2) Корпус датчика с синим и красным СИД (светоизлучающие диоды), фотодиодом и электронным преобразователем сигнала (анализатором).
В рабочем положении крышка накручивается на датчик и погружается в воду. Молекулы кислорода в анализируемом образце вступают в непосредственный контакт с люминофором.
В процессе измерения синий СИД испускает импульс света, который проходит через прозрачную подложку и частично поглощается слоем люминофора. Электроны в молекулах люминофора при этом переходят на более высокий энергетический уровень (возбужденное состояние). В течение нескольких микросекунд электроны возвращаются в исходное состояние через несколько промежуточных энергетических уровней, испуская разницу в энергиях в виде более длинноволнового (красного) излучения.