Анализ следов веществ
Растворимые твердые вещества очищают перекристаллизацией для более или менее полного удаления всех посторонних веществ или же химической обработкой для удаления определенных загрязнений. Метод химической обработки применяется часто. К раствору можно добавить подходящий реагент, который образует малорастворимое соединение с веществом, подлежащим удалению; целесообразно применять по возможности такой носитель, который образует смешанные кристаллы с осаждаемым соединением. Применяют также экстракционные методы очистки. Например, ряд тяжелых металлов можно извлекать из нейтральной или слабощелочной среды с помощью дитизона.
Холостые опыты
Правильно поставленный холостой опыт дает представление о количестве определяемого вещества, вносимого сосудом и реагентами. Цель очистки реагентов заключается в уменьшении содержания анализируемого компонента до такой степени, чтобы оно было мало по сравнению с содержанием его в пробе; по возможности посуда, употребляемая в анализе, должна быть из такого материала, который не будет отдавать в раствор заметного количества определяемого вещества.
Холостой опыт необходимо провести по всем соответствующим стадиям анализа. Большая величина, получаемая в холостом опыте, естественно, нежелательна, так как она снижает точность определения компонента в пробе. Если известно, что никакого заметного количества определяемого вещества с химической посудой не вносится, целесообразно для увеличения точности провести холостой опыт с большим количеством реагентов. Холостой опыт, в котором определяемый элемент не найден, безусловно, не является доказательством того, что его на самом деле нет в растворе. Такой результат при анализе следов может вызвать подозрение. Он может означать, что посторонние вещества, присутствующие в реактиве, соединяются с исследуемым компонентом, не допуская его взаимодействия с колориметрическим реагентом. Например, следы сульфида при определении различных тяжелых металлов дитизоном могут привести к заниженным результатам, образуя соединения, инертные к колориметрическому реагенту. Присутствие таких мешающих веществ можно обнаружить, подвергнув стандартные растворы той же обработке, что и анализируемый образец.
Стандартные растворы
Разбавленные растворы, содержащие ионы металлов, могут значительно уменьшать свою концентрацию при стоянии в результате адсорбции на стеклянных стенках сосуда или катионного обмена с ними. Потерн металла наиболее высоки в нейтральной или слабощелочной среде, но они могут происходить также в слабокислых растворах, хотя и в меньшей степени. Чем сильнее разбавлен раствор, тем большим будет относительное уменьшение концентрации. Так, найдено г, что в растворах Mo, V, Ti и Ni с концентрацией 0,001% содержание металла после 75 дней хранения раствора в хорошо промытом сосуде из венского стекла составило от 0,2 до 0,4 от первоначального; в растворах Au, Pt, Pd и Ru с концентрацией 0,001% содержание металла через 230 дней хранения в посуде из того же стекла уменьшалось до 0,1–0,3 от первоначальной концентрации. В сосудах из кварцевого стекла наблюдалось лишь незначительное уменьшение концентрации растворов, за исключением раствора палладия, концентрация которого после стояния в течение 230 дней упала до 0,3 первоначальной величины. Согласно данным, полученным автором, в кислых растворах, которые хранят в сосудах из стекла пирекс, для большинства металлов потери гораздо меньше указанных; однако этот источник ошибок не следует недооценивать. Рекомендуется готовить стандартный раствор в два приема. Готовят раствор средней концентрации в 0,1–1 н. кислоте. Этот раствор должен быть стабильным в течение длительного времени, особенно если содержится в сосудах из стекла пирекс; из этого раствора разведением можно получить более разбавленные стандартные растворы. Их готовят слабокислыми и хранят в сосудах из стекла пирекс. В растворах не должно происходить каких-либо заметных изменений концентрации в течение 1–2 недель. Даже очень разбавленные растворы свинца и ионов уранила устойчивы при хранении в колбах из боросиликатного стекла или полиэтилена в течение нескольких месяцев, если их кислотность достаточна для предотвращения гидролиза. Особенно важно подкнсление стандартных растворов металлов высокой валентности. Для сохранения некоторых металлов, таких, как цирконий, иногда необходима кислотность до 1 или 2 н.
Рост плесени в растворах органических кислот может привести к потере металлов из раствора, как это показано на примере стронция.
Растворы металлов в органических растворителях никогда не хранят в полиэтиленовых бутылях. Стандартные растворы можно готовить из чистых металлов или чистых солей определенного состава. Если имеются соли хорошего качества, их, как правило, можно применять для колориметрии без дополнительной очистки. По возможности применяют безводные соли. Чтобы удалить большую часть связанной воды, соли следует измельчить до порошкообразного состояния и высушить при 100° или более высокой температуре для удаления гигроскопической влаги. Во многих случаях можно успешно использовать кристаллогидраты, если они не гигроскопичны на воздухе и заметно не подвергаются выветриванию. Кристаллы должны быть достаточно большими, чтобы можно было выбрать из них прозрачные и невыветрившиеся. Такие воздушно-сухие кристаллы могут содержать несколько десятых долей процента адсорбированной влаги, но это редко имеет значение при определении следов. Слишком точное взвешивание стандартного вещества является неоправданной тратой времени. Например, для приготовления 1 л 0,1%-ного раствора шестнвалентного хрома следует взять 3,73 г. К.оСг04, а не 3,734 г.
Отбор проб
При колориметрическом определении следов обычно берут относительно большую пробу, и отбор средней пробы, как правило, не представляет особых трудностей. Нужно соблюдать лишь обычные меры предосторожности. Следует обращать внимание на то, чтобы в анализируемый образец не попадали сопутствующие посторонние вещества. Например, загрязнение пробы почвой или пылью может привести к существенным ошибкам при определении следов веществ в растениях.
Приготовление биологических проб для определения следов металлов
За очень редкими исключениями, органическую ткань необходимо разрушить, прежде чем приступить к определению в ней следов элементов. Это можно сделать двумя способами – сухим сжиганием или мокрым окислением. По первому методу образец прокаливают в муфельной печи обычно при температуре 500–550°. Этот метод имеет ряд преимуществ: выполнение его просто, исключено попадание в образец следов посторонних элементов с окислителями, применяемыми в мокром методе. Однако полное сожжение углерода не всегда происходит быстро и легко; особенно доставляют трудности вещества животного происхождения, и может иметь место потеря микроэлементов. Определенные элементы могут улетучиваться. Существует также опасность, что следы определяемых элементов прореагируют с материалом чашки. При озоленин образцов с низким содержанием минеральных веществ в кварцевых или фарфоровых чашках заметная часть определяемого компонента удерживается на поверхности чашки вследствие образования силиката, который не всегда полностью удается разложить кислотами. Этот эффект проявляется заметнее при пользовании старыми чашками с шероховатой поверхностью. Снижению таких потерь способствует добавление инертных веществ для уменьшения поверхности контакта. Если применить платиновую чашку, то легко окисляемые металлы, такие, как свинец или медь, могут сплавляться со стенкой и при промывке кислотой их невозможно удалить полностью. Нерастворимые вещества могут прочно захватывать тяжелые металлы. Наконец, при сухом сжигании имеется некоторая опасность загрязнения проб атмосферной пылью или веществами, возгоняющимися с внутренней поверхности печи.