Цифровая фототриангуляция для создания топографических карт
Рефераты >> Геология >> Цифровая фототриангуляция для создания топографических карт

(1.29)

где и .

После определения Dp0 и Dq0 уточняют значения искомых параметров p0 и q0 и затем выполняют следующую итерацию. Этот процесс повторяется до получения требуемой точности вычисления неизвестных.

Алгоритм наименьших квадратов по сравнению с методом взаимной корреляции обладает рядом следующих преимуществ.

Во-первых, метод наименьших квадратов позволяет оценить точность определения искомых параметров. Для оценки точности используют среднюю квадратическую ошибку (СКО) единицы веса, которая будет характеризовать влияние шумовых составляющих и качество образца, и СКО определения параметров p0 и q0, характеризующие точность отождествления соответственно по осям x и y. Значение СКО единицы веса определяется по известной формуле:

(1.30)

где n – количество уравнений поправок, а k – количество неизвестных.

СКО определения неизвестных p0 и q0 выражаются формулами:

(1.31)

где и – соответствующие диагональные элементы обратной матрицы нормальных уравнений.

Во-вторых, метод наименьших квадратов позволяет вести не глобальный поиск соответственной точки, подставляя все возможные значения p и q, как в методе взаимной корреляции, а вдоль направления градиента функции.

В-третьих, как показывает практика, из всех разработанных алгоритмов отождествления метод наименьших квадратов дает наилучшие результаты в отношении точности.

В-четвертых, геометрические ограничения, накладываемые на положение и ориентацию снимков относительно плоскости объектов, несколько ослаблены при использовании метода наименьших квадратов по сравнению с методом взаимной корреляции.

К недостаткам метода наименьших квадратов следует отнести:

- алгоритм, как и все методы площадного отождествления, устойчиво работает только при незначительной разномасштабности и взаимных углах наклона и разворота снимков;

- для получения корректного решения требуется достаточно точно задать параметры p0 и q0.

Широкое распространение на практике получили следующие программные продукты цифровой фототриангуляции:

1) Softplotter фирмы Vision;

2) DPW фирмы Leica;

3) Imagine Station фирмы Intergraph;

4) Match AT – первая программа полностью автоматической ПФТ;

5) Helava Automated Triangulation System;

6) Phodis AT.

Среди российских ЦФС, в которых реализована программа цифровой ПФТ, распространение получили:

1) ЦФС Photomod фирмы Ракурс;

2) Talka, разработанная институтом проблем управления РАН;

3) ЦНИИГАиК.

Они имеют различные алгоритмы и способы реализации, высокую скорость обработки данных, удобный пользовательский интерфейс, гибкость и универсальность, возможность интерактивного режима работы оператора на всех этапах технологических процессов построения сети. По уровню автоматизации все программы ЦФТ делятся на: автоматические и полуавтоматические.

Основными технологическими процессами, которые существуют в любой программе цифровой фототриангуляции [7] являются:

1) создание проекта;

2) внутреннее ориентирование снимков;

3) измерение координат точек снимков;

4) предварительное построение сети;

5) уравнивание сети;

6) оценка точности построения сети.

2. Технология построения блочной сети фототриангуляции на ЦФС «Фотомод»

2.1 Краткая характеристика ЦФС «Фотомод»

Цифровая фотограмметрическая система PHOTOMOD предназначена для решения полного комплекса задач от создания блока изображения до построения моделей рельефа, создания цифровых карт местности и ортофотопланов. Система PHOTOMOD включает средства обработки аэрофотоснимков и сканерных изображений, полученных с помощью различных сенсоров таких, например, как IKONOS, QuickBird, SPOT, ASTER или IRS.

Система PHOTOMOD производится российской компанией Ракурс (Москва) и динамично развивается, начиная с версии 1.1, выпущенной в 1994 году.

Система цифровой фотограмметрии PHOTOMOD включает следующие основные модули[5]:

- PHOTOMOD Montage Desktop – создание и управление проектами

- PHOTOMOD AT – сбор данных и измерения при обработке блока изображений

- PHOTOMOD Solver – уравнивание сети фототриангуляции

- PHOTOMOD StereoDraw – 3D векторизация в стереорежиме по стереопаре

- PHOTOMOD StereoVectOr – параллельная работа с картой формата PHOTOMOD VectOr в окнах StereoDraw (3D векторизация) и VectOr (векторизация по ортофото и редактирование карты)

- PHOTOMOD DTM – построение моделей рельефа, горизонталей по стереопаре

- PHOTOMOD Mosaic – построение ортофотопланов

- PHOTOMOD VectOr – создание и вывод на печать цифровых карт

- PHOTOMOD ScanCorrect – исправление искажений, вносимых в исходные изображения при использовании планшетных сканеров

2.2 Основные процессы технологии построения блочной сети фототриангуляции на ЦФС «Фотомод»

Структурой данных системы PHOTOMOD является[5] проект, который содержит все необходимые файлы для работы – изображения, модели рельефа, трёхмерные векторные объекты, таблицы баз данных модуля PHOTOMOD AT и многое другое. В терминологии системы PHOTOMOD эти файлы называются ресурсами. Каждый ресурс имеет идентификатор, который однозначно указывает на него во всей системе. Идентификатор – это строка специального формата не изменяемая пользователем. У каждого ресурса есть имя, задаваемое пользователем. В отличие от идентификатора, имя может совпадать у нескольких ресурсов или вообще отсутствовать. Также система хранит для каждого ресурса его размер, даты создания и последнюю модификацию, а также тип и подтип.

Ресурсы хранятся в созданных при настройке конфигурации системы хранилищах, которые могут быть расположены на различных локальных машинах. Хранилище представляет собой каталог на диске, где в виде файлов лежат данные ресурсов.

Хранилище может быть локальным, если оно расположено на диске данного компьютера или удалённым, если оно доступно через сеть Microsoft Windows.

Для создания хранилища ресурсов нажимают кнопку “добавить хранилище” в Панели управления PHOTOMOD.

Система PHOTOMOD производит обработку проекта в 4 этапа: формирование сети, измерение сети, уравнивание сети, обработка сети.

На этапе формирования сети производится ввод маршрутов и изображений блока. При необходимости изображения могут быть развёрнуты или переставлены в пределах маршрута. В данном случае использовались снимки масштаба 1:12000. Для удобной работы на этапе формирования блока используется окно “Схема блока”. Для формирования блока используются следующие операции: добавить маршрут, удалить маршрут, перемещение маршрута «вверх» по схеме, перемещение маршрута «вниз» по схеме, поворот/отражение всех изображений маршрута, переставить снимки маршрута в обратном порядке, добавить изображение, удалить изображение, переместить изображение «влево», переместить изображение «вправо».


Страница: