Уравнивание геодезических сетей сгущения упрощенным способом
4. оценка ожидаемой точности полученных результатов.
1.2 Составление схемы расположения определяемого и исходных пунктов
Составление схемы я произвела на листе миллиметровой бумаги формата А4. При этом оцифровала в масштабе 1:10000. По координатам из таблицы 1 нанесла исходные пункты А, В, С. Искомый пункт Р нанесла по углам с помощью геодезического транспортира. Схема представлена в приложении А.
1.3 Выбор наилучших вариантов засечки
Для определения наилучших вариантов засечки произвела построение инверсионных треугольников. Для этого на схеме из приложения А сделала следующие построения:
- от пункта Р по направлениям РА, РВ, РС отложила отрезки r, длину которых вычислила по формуле:
, (1) где
С – произвольно выбранное число
S – расстояние от определяемого пункта до исходного, измеренное по схеме в сантиметрах.
Для моего варианта:
С=10 , S1=6,8 см, S2=10,1 см, S3=5,1 см
r1=1,47 см, r2=0,99 см, r3=1,96 см
Вершинами инверсионных треугольников являются пункт Р и конечные точки соответствующих отрезков ri . Лучшие варианты засечки – те, у которых самые большие площади инверсионных треугольников (определяем визуально). На моей схеме это треугольники r1r3P и r2r3P, следовательно, для решения нужно использовать засечки РАС и ВРС, но засечка РАС не может быть использована из-за того, что неизвестен угол РАС. Поэтому для нахождения координат точки Р я использовала засечки АВР и СВР (обозначения согласно прил. 1).
1.4 Решение наилучших вариантов засечки
Для решения вариантов засечки будем использовать формулы Юнга:
(2)
где X1, X2, Y1, Y2 – координаты исходных пунктов
α, β – горизонтальные углы, измеренные на исходных пунктах.
В формулах (2) обозначения соответствуют схеме, изображенной на рисунке 1.
Рисунок 1 – Схема к вычислениям прямой засечки.
Используя формулы (2) вычислила координаты определяемого пункта Р, результаты вычислений приведены в таблице 2.
Таблица 2 – Вычисление вариантов прямой засечки.
обозначения |
углы |
X |
ctg α, ctg β |
Y | |||
пунктов |
углов |
градусы |
минуты |
секунды |
ctg α + ctg β | ||
1(A) |
α |
88 |
56 |
20 |
5552,55 |
0,018522 |
2402,09 |
2(B) |
β |
43 |
04 |
20 |
4853,04 |
1,069662 |
2151,60 |
P |
5310,45 |
1,088184 |
3040,65 | ||||
1(B) |
α |
29 |
53 |
08 |
4853,04 |
1,740068 |
2151,60 |
2(C) |
β |
91 |
03 |
39 |
4813,,24 |
-0,018517 |
3008,33 |
P |
5310,46 |
1,721551 |
3040,66 |
Расхождение координат, полученных при решении двух вариантов засечки, с учетом точности измерений допускается до 0,2 м.
В моём случае расхождение по Х составило 0,1 м, и по Y - 0,1 м. расхождения находятся в допуске, следовательно, за окончательные значения координат принимаем средние значения двух вариантов.
Среднее Х=5310,455
Среднее Y=3040,655
1.5 Оценка ожидаемой точности полученных результатов
Я определила среднюю квадратическую ошибку положения точки для каждого варианта засечки по формуле:
(3)
где mβ – средняя квадратическая ошибка измерения углов (в задании принимаем mβ=10''),
- угол в треугольнике при точке Р,
S1, S2 – стороны засечки, м (определены по схеме),
=206265''.
Среднюю квадратическую ошибку координат, полученных из двух вариантов засечки, нашла из формулы:
(4).
углы γ нашла по определению, что сумма углов треугольника равна 180°: для АВР γ=180°-(88°56'20''+43°04'20'')=47°59'20''
для СВР γ=180°-(29°53'08''+91°03'39'')=59°03'13''
Из формулы (4) нащла среднюю квадратическую ошибку координат, полученных из двух вариантов засечки:
м
Итак, в этой задаче я решила два варианта прямой многократной засечки и вычислила координаты дополнительного пункта. Расхождения координат, полученных в первом и втором вариантах засечки оказались в допуске, поэтому за окончательное значение координат исходного пункта Р я приняла Х=5310,455 и Y=3040,655. При оценке точности полученных результатов получила следующие ошибки:
- среднюю квадратическую ошибку положения торчки Р для каждого варианта засечки: mp1=0,079 м, mp2=0,064 м
- среднюю квадратическую ошибку координат, полученных из двух вариантов засечки: Mp Cp=0,051 м