Расчет валов редуктораРефераты >> Технология >> Расчет валов редуктора
Предварительная конструктивная проработка валов и подшипниковых узлов выполняется на стадии эскизного проекта редуктора с использованием рекомендаций [3…6] и других источников. Окончательное конструктивное исполнение этих узлов определяется по результатам расчета валов и подшипников по критериям их работоспособности. При известных нагрузках на валы эти расчеты можно произвести, составив расчетную схему каждого вала.
На сборочных чертежах и схемах подшипники качения в осевых разрезах изображается, как правило, упрощенно по СТ СЭВ 1797 - 79. На конструктивных схемах обычно не указываются конструкция и тип подшипника сплошными линиями, внутри которого проводятся сплошными тонкими линиями диагонали (рис. 9.4…9.6). Рекомендуемые разновидности упрощенного изображения подшипников качения на сборочных чертежах приведены в таблице 9.1. Для студентов предпочтительно изображать подшипники комбинированно, то есть в одной половине выполнить разрез конструкции подшипника без фасок и сепаратора, а во второй половине – условное контурное очертание. Оно выполняется сплошными основными линиями, внутри которого проводя сплошные тонкие линии диагонали (первая строка в таблице).
Конструкции подшипниковых узлов выполняются по схемам "враспор", "врастяжку" и с одной или двумя плавающими опорами (см. главу 6 [4]). Каждая из рассматриваемых схем установки подшипников имеет свои преимущества, недостатки и область применения.
Расчетные схемы валов и осей редукторов представляются в виде балок на шарнирных опорах. Плавающие опоры, воспринимающие только радиальные нагрузки, заменяют шарнирно-подвижными опорами. Положение шарнирной опоры для радиальных подшипников принимаются в середине ширины подшипника.
Для радиально-упорных подшипников расстояние "а" точки приложения радиальной реакции от торца подшипника (рис. 9.1) может быть определена аналитически по формулам:
a) Шарикоподшипники радиально-упорные однорядные
;
b) Роликоподшипники конические однорядные радиально-упорные
;
Значения В, Т, d, D, α и е принимаются по таблицам параметров подшипников.
Проведенные расчеты конструкций валов показы-вают, что при незначитель-ной погрешности результа-тов расчета можно принять а ≈ В для подшипников типа 36000 и а ≈ Т для подшипников типа 7000.
Для составления расче-тных схем валов целесоо-бразно нарисовать объем-ную схему редуктора с на-гружением колес и валов типа приведенной на рис. 9.3. На этом рисунке условно изображены валы, подшипники и средние сечения колес по делительным или начальным диаметрам, к которым приложены соответствующие силы в зонах зацепления. Согласно задания к схеме привода к тихоходному валу приложены силы от передачи. При выборе направления сил учитывается направление вращения валов и наклон зубьев и витков в элементах передач. При отсутствии специальных требований червяк имеет правое направление витков, а червячное колесо – правое направление зубьев. Наклон зубьев цилиндрических колес целесообразно выбирать с учетом возможного взаимного уравновешивания осевых сил. Положение вектора силы FM, действующей от соединительной муфты на быстроходный вал, не фиксируется так как оно имеет случайный характер. Примеры объемных схем редуктора приведены на рис 9.3 и других рисунках.
В нереверсивном приводе задается направление вращения выходного вала привода (конвейера, дробилки и т. д.) и с учетом числа передач, их разновидностей и компоновки привода определяется требуемое направление вращение входного (быстроходного) вала редуктора и двигателя. В курсовом проекте студент самостоятельно выбирает направление вращения быстроходного вала редуктора и задается направлением зубьев колес в косозубых передачах.
В приводах с частым реверсированием целесообразно рассмотреть реакции в опорах и изгибающие моменты валов при их вращении в двух направлениях с целью последующего расчета на прочность валов и подшипников редуктора по наихудшему варианту нагружения или с учетом частого реверсирования. Из рисунка 9.3. видно, что при реверсировании привода изменяется обычно направление окружной и осевой сил в зубчатых передачах. Для некоторых конструкций валов, на которых, например, установлены только колеса конических и прямозубых цилиндрических передач, реверсирование не влияет на их прочность и долговечность подшипников.
Для валов, опирающихся на радиально-упорные подшипники осевая нагрузка определяется не только соответствующими составляющими сил в зацеплении.
В радиально-упорных подшипниках при действии на них радиальных нагрузок Rri возникают внутренние осевые составляющие Si, определяемые по формулам:
0,83∙е∙Rri;
для конических роликоподшипников Ке=0,83;
е∙Rri;
для радиально-упорных подшипников Ке=1;
где е – вспомогательный коэффициент влияния осевой нагрузки, принимаемый по таблице параметров подшипников;
Ке – коэффициент, учитывающий тип подшипника.
Для определения общих осевых нагрузок Rri в опорах с радиально-упорными подшипниками учитывают условие равновесия всех осевых сил, действующих на вал, т.е. сумму внешних осевых нагрузок Fa∑, приложенных к валу, и осевые составляющие Si от радиальных нагрузок Rri. Рекомендации по определению Rаi с учетом схемы установки и условия нагружения приведены в таблице 9.2. В верхней части каждой схемы установки показаны радиальные нагрузки Rri на подшипники и их осевые составляющие Si, а в нижней части – общие осевые нагрузи Rаi и суммарная осевая нагрузка Fa∑ с учетом её направления.
Рассмотрим часто встречающуюся конструкцию узла вала, который имеет одну плавающую опору Б (рис 9.2.) и вторую опору А с двумя радиально-упорными подшипниками, которые воспринимают все осевые нагрузки.
Установленные "враспор" рядом два радиально-упорных подшипника (опора А на рисунке 9.2,а) имеют практически одну точку опоры в середине между этими подшипниками. Установка рассматриваемых подшипников "врастяжку" (опора Б на рисунке 9.2,б) ведет к разнесению их опорных точек, что требует увеличения точности изготовления расточек в корпусе под опоры А и Б, ухудшает условия работы подшипников и усложняет их расчет. Поэтому конструкция опоры А по рисунку 9.2,б обычно не используется.
Рекомендации по определению общей радиальной и осевой нагрузок, воспринимается каждым из двух радиально-упорных подшипников (1 и 2) установленных, "враспор" в одной опоре А (рис 9.2,а), приведены в таблице 9.3. Схемы установок в таблице 9.3 отличаются направлением суммарной внешней осевой силы Fa∑. При наличии Fa∑ суммарная радиальная нагрузка Rа опоры А неравномерно распределяется на подшипники 1 и 2 этой опоры. При относительно больших значениях силы Fa∑ всю радиальную и осевую нагрузку воспринимает только один из подшипников (1 или 2) в зависимости от направления силы Fa∑.