Финансовый контроль и планирование с помощью ExcelРефераты >> Программирование и компьютеры >> Финансовый контроль и планирование с помощью Excel
Если данный процесс статичен и очень важен для успешной деятельности вашего предприятия, то вы, скорее всего, остановите свой выбор на почасовом фиксировании данных. Например, если компания производит керамическую плитку, то цвет глазури при выходе продукции из печи для обжига является очень важным параметром для клиентов.
Термин средний означает, что СМУ зачастую зависит от выборочного контроля нескольких единиц продукции в любой момент времени. Предположим, вы решили проверить счета-фактуры, которые подготавливает отдел счетов дебиторов, на наличие ошибок. Проверка каждого документа была бы длительным и дорогостоящим мероприятием; но в то же время, проверяя, скажем, по одному счетуфактуре в день, вы, скорее всего, не получите более или менее точного результата.
В подобных случаях СМУ подразумевает произвольную контрольную проверку, а для оценки процесса за определенный период времени используется средний показатель этой проверки. Можно, например, производить контрольную проверку пяти счетов-фактур в день и использовать для расчетов среднее количество ошибок, выявленных в ходе этой проверки.
Можно также выполнять 100-процентную контрольную проверку. В этом случае вам придется проверять каждый элемент процесса, например, осуществить тестирование в производственном цикле каждой единицы продукции после окончания сборки изделия.
Выход из-под контроля означает, что СМУ оперирует информацией не только о среднем уровне процесса, а также и о его способности изменяться. Предположим, вы – начальник отдела обслуживания клиентов компании, предоставляющей финансовые услуги, и 20 сотрудников вашего отдела занимаются приемом заказов клиентов по телефону. Вы организовываете проверку продолжительности шестнадцати телефонных разговоров в день, в результате которой узнаете, что средняя продолжительность разговора составляет 2 мин 20 с.
Время (140 с), затрачиваемое на средний телефонный разговор, представляется вам вполне приемлемым показателем до тех пор, пока вы не заметите, что 12 разговоров продолжаются меньше 20 минут, а оставшиеся четыре из них – больше 6 мин каждый. Вероятно, вам захочется выяснить причину такого расхождения продолжительности разговоров. (Не личные ли это звонки? А может служащий заставляет ждать клиента, пока сам разыскивает данные, которые должен иметь под рукой?) Заметьте, что о вышеупомянутом расхождении в продолжительности разговоров вы не смогли бы узнать, если бы получили только средний показатель этого значения.
Использование х- и s-диаграмм
Для того чтобы представить данные в наглядной форме, в статистическом методе управления обычно используются диаграммы (рис.20,21).
Диаграммы статического процесса бывают двух видов: одни отображают средние показатели процесса (х-диаграммы), а другие – стандартное отклонение (s-диаграммы).
Стандартное отклонение (standart deviation) – это мера вариации отдельных показателей относительно среднего показателя. Стандартное отклонение аналогично понятию диапазона между максимальным и минимальным значениями, однако имеет более гибкие характеристики: диапазон указывает только разницу между максимальным и минимальным результатами наблюдений, а стандартное отклонение учитывает абсолютно все результаты наблюдений при определении изменчивости в группе показателей.
На горизонтальной оси обеих диаграмм откладывается период времени (час, день, неделя), в течение которого был проведен конкретный замер результатов. На вертикальной оси хдиаграммы фиксируются средние значения выборочных замеров в конкретный момент времени, а на вертикальной оси s-диаграмм – показатели стандартного отклонения контрольного замера, произведенного в определенный момент времени. Эти диаграммы называются х- и з-диаграммами потому, что в статистике х является символом среднего значения, а s – символом стандартного отклонения.
На рис. 22,23 к показателям, приведенным на рис. 20,21, добавлены три дополнительные характеристики.
На диаграммы, изображенные на рис.22,23, нанесены три линии, позволяющие понять происходящий процесс. Эти горизонтальные линии называются верхним контрольным пределом (ВКП), центральной линией (ЦЛ) и нижним контрольным пределом (НКП). С помощью данных линий можно проследить следующие зависимости.
Если слишком большое количество экспериментальных точек находятся выше ВКП (либо ниже НКП), это означает, что с процессом происходит что--то неладное.
Если ряд экспериментальных точек находится между ЦЛ и ВКП (либо ЦЛ и . НКП), это также означает, что процесс требует вмешательства.
Если ряд экспериментальных точек имеет тенденцию повышения к ВКП, следует сделать вывод, что протекание процесса затруднено.
Вы, конечно, понимаете, насколько полезной может оказаться эта информация. Она указывает не только на вероятность выхода процесса из-под контроля, но и на то, в какой именно момент это началось. С помощью диаграмм можно определить причину возникшей проблемы: возможно, изменение параметров процесса происходит всякий раз при изменении штата (например, при пересменке). Причиной также может служить переход на зимнее время (или обратно), при котором служащие в течение нескольких дней привыкают к новому режиму работы. Появление определенных проблем может быть связано с понижением температуры окружающей среды, в результате чего отопительная система вашего предприятия начинает работать интенсивнее, что приводит к попаданию большего количества пыли на чувствительное производственное оборудование.
Но если вам известно о существовании определенной проблемы, а также время ее возникновения, это может помочь выявить причину ее появления.
Параметр ЦЛ является двойным средним значением. В х-диаграммах каждая точка представляет конкретный день, а среднее значение этой точки определяется на основе всех данных наблюдений, зафиксированных в этот день. Средние значения всех дней затем применяются для вычисления общего среднего – это и есть ЦЛ х-диаграммы. ЦЛ для з-диаграмм строится таким же образом, за исключением того, что вычисления начинаются со стандартного отклонения на каждый день, а затем определяется среднее значение всех этих показателей.
Зафиксировать отрицательные значения рассмотренных выше параметров при реальных наблюдениях невозможно, но в процессе вычислений с помощью СМУ могут появиться отрицательные значения НКП. В некоторых справочниках предлагается отрицательные НКП заменять нулевыми значениями. Чтобы было понятно, что ВКП и НКП равноудалены от ЦЛ, на диаграммах, приведенных в данной главе, допускается отрицательное значение НКП.
В результате использования метода стандартного отклонения было выявлено, что при отсутствии каких-либо нетипичных ситуаций в крупносерийном производстве менее трех десятых одного процента средних дневных значений измеряемых показателей (0,003) выше ВКП и ниже НКП.
Поэтому, если производственный процесс протекает в обычном режиме, вы предполагаете, что только один результат наблюдений из 300 будет выходить за контрольные пределы. Если же количество этих результатов больше, то имеются все основания предположить, что нормальный ход процесса нарушен.