Трехмерная компьютерная графикаРефераты >> Программирование и компьютеры >> Трехмерная компьютерная графика
Алгоритм со списком ребер и флагом
Обрисовка контура:
Используя соглашения о середине интервала между сканирующими строками для каждого ребра, пересекающего сканирующую строку, отметить самый левый пиксел, центр которого лежит справа от пересечения; т.е.
x + 1/2 > xпересечения
Заполнение:
Для каждой сканирующей строки, пересекающей многоугольник
Внутри = FALSE
for x = 0 (левая граница) to x = xmax, (правая граница)
if пиксел в точке x имеет граничное значение
then инвертировать значение переменной Внутри
if Внутри = TRUE then
присвоить пикселу в x значение цвета многоугольника
else
присвоить пикселу в x значение цвета фона
end if
next x
В данном алгоритме каждый пиксел обрабатывается только один раз, так что затраты на ввод/вывод значительно меньше, чем в алгоритме со списком рёбер, в результате чего, при его аппаратной реализации, он работает на один-два порядка быстрее чем алгоритм с упорядоченным списком рёбер.
2.9. Алгоритмы заполнения с затравкой
В обсуждавшихся выше алгоритмах заполнение происходит в порядке сканирования. Иной подход используется в алгоритмах заполнения с затравкой. В них предполагается, что известен хотя бы один пиксел из внутренней области многоугольника. Алгоритм пытается найти и закрасить все другие пикселы, принадлежащие внутренней области. Области могут быть либо внутренние, либо гранично-определенные. Если область относится к внутренне - определенным, то все пикселы, принадлежащие внутренней части, имеют один и тот же цвет или интенсивность, а все пикселы, внешние по отношению к области, имеют другой цвет. Это продемонстрировано на рис. 2.10. Если область относится к гранично-определенным, то все пикселы на границе области имеют выделенное значение или цвет, как это показано на рис. 2.11. Алгоритмы, заполняющие внутренне - определенные области, называются внутренне - заполняющими, а алгоритмы для гранично-определённых областей – гранично-заполняющими. Далее будут обсуждаться гранично-заполняющие алгоритмы, однако соответствующие внутренне заполняющие алгоритмы можно получить аналогичным образом.
2.10. Построчный алгоритм заполнения с затравкой
Используя стек, можно разработать алгоритм заполнения гранично-определенной области. Стек - это просто массив или другая структура данных, в которую можно последовательно помещать значения и из которой их можно последовательно извлекать. Как показывает практика, стек может быть довольно большим. Зачастую в нём содержится дублирующаяся информация. В построчном алгоритме заполнения с затравкой стек минимизируется за счёт хранения только затравочного пиксела для любого непрерывного интервала на сканирующей строке. Непрерывный интервал - это группа примыкающих друг к другу пикселов (ограниченная уже заполненными или граничными пикселами). Мы для разработки алгоритма используем эвристический подход, однако также возможен и теоретический подход, основанный на теории графов.
Данный алгоритм применим гранично-определённым 4-связным областям, которые могут быть как выпуклыми, так и не выпуклыми, а также могут содержать дыры. В области, внешней и примыкающей к нашей, не должно быть пикселов с цветом, которым область или многоугольник заполнятся. Схематично работу алгоритма можно разбить на четыре этапа.
Построчный алгоритм заполнения с затравкой
Затравочный пиксел на интервале извлекается из стека, содержащего затравочные пикселы.
Интервал с затравочным пикселом заполняется влево и вправо от затравки вдоль сканирующей строки до тех пор пока не будет найдена граница.
В переменной Xлев и Xправ запоминаются крайний левый и крайний правый пикселы интервала
В диапазоне Xлев £ x £ Xправ проверяются строки расположенные непосредственно над в под текущей строкой. Определяется, есть ли на них еще не заполненные пикселы. Если такие пикселы есть (т. е. не все пикселы граничные, или уже заполненные), то в указанном диапазоне крайний правый пиксел в каждом интервале отмечается как затравочный и помещается в стек.
При инициализации алгоритма в стек помешается единственный затравочный пиксел, работа завершается при опустошении стека. Ниже приводится более подробное описание алгоритма на псевдокоде.
Построчный алгоритм заполнения с затравкой
Затравка ( x, y ) выдаёт затравочный пиксел
Pop - процедура, которая извлекает пиксел из стека
Push - процедура, которая помещает пиксел в стек
инициируем стек
Push Затравка ( x, y )
While ( стек не пуст )
Извлекаем пиксел из стека и присваиваем ему новое значение Pop Пиксел ( x, y )
Пиксел ( x, y ) = Нов_значение
сохраняем x- координату затравочного пиксела
Врем_х = x
заполняем интервал справа от затравки
x = x +1
while Пиксел ( x, y ) ¹ Гран_значение
Пиксел ( x, y ) = Нов_значение
x = x +1
end while
сохраняем крайний справа пиксел
Xправ = x -1
восстанавливаем x- координату затравки
x = Врем_х
заполняем интервал слева от затравки
x = x -1
while Пиксел ( x, y ) ¹ Гран_значение
Пиксел ( x, y ) = Нов_значение
x = x -1
end while
сохраняем крайний слева пиксел
Xлев = x +1
восстанавливаем x- координату затравки
x = Врем_х
проверим, что строка выше не является ни границей многоугольника, ни уже полностью заполненной; если это не так, то найти затравку, начиная с левого края подинтервала сканирующей строки
x = Xлев
y = y +1
while x £ Xправ
ищем затравку на строке выше
Флаг = 0
while ( Пиксел ( x, y ) ¹ Гран_значение and
Пиксел ( x, y ) ¹ Нов_значение and x < Xправ )
if Флаг = 0 then Флаг = 1
x = x + 1
end while
помещаем в стек крайний справа пиксел
if Флаг =1 then
if ( x = Xправ and Пиксел ( x, y ) ¹ Гран_значение and Пиксел ( x, y ) ¹ Нов_значение ) then