Трехмерная компьютерная графикаРефераты >> Программирование и компьютеры >> Трехмерная компьютерная графика
Удаление нелицевых плоскостей
Для каждого тела в сцене:
Сформировать многоугольники граней и ребра, исходя из списка вершин тела.
Вычислить уравнение плоскости для каждой полигональной грани тела.
Проверить знак уравнения плоскости:
Взять любую точку внутри тела, например усреднив координаты его вершин.
Вычислить скалярное произведение уравнения плоскости и точки внутри тела.
Если это скалярное произведение < О, то изменить знак уравнения этой плоскости.
Сформировать матрицу тела.
Умножить ее слева на матрицу, обратную матрице видового преобразования, включающего перспективу.
Вычислить и запомнить габариты прямоугольной объемлющей оболочки преобразованного объема: xmin, xmax,ymin, ymax.
Определить нелицевые плоскости:
Вычислить скалярное произведение пробной точки, лежащей в бесконечности, на преобразованную матрицу тела.
Если это скалярное произведение < О, то плоскость невидима.
Удалить весь многоугольник, лежащий в этой плоскости. Это избавляет от необходимости отдельно рассматривать, невидимые линии, образуемые пересечением пар невидимых плоскостей.
Удаление из каждого тела тех ребер, которые экранируются всеми остальными телами в сцене:
Если задано только одно тело, то алгоритм завершается.
Сформировать приоритетный список этих тел:
Провести сортировку по z. Сортировка производится по максимальным значениям координаты z вершин преобразованных тел. Первым в упорядоченном списке и обладающим наибольшим приоритетом будет то тело, у которого минимальное среди максимальных значений z. В используемой правой системе координат это тело будет самым удаленным от точки наблюдения, расположенной в бесконечности на оси z.
Для каждого тела из приоритетного списка:
Проверить экранирование всех лицевых ребер всеми другими телами сцены. Тело, ребра которого проверяются, называется пробным объектом, а тело, относительно которого в настоящий момент производится проверка, называется пробным телом. Естественно, что нужно проверять экранирование пробного объекта только теми пробными телами, у которых ниже приоритеты.
Провести проверки экранирования для прямоугольных объемлющих оболочек пробного объекта и пробного тела:
Если xmin (пробное тело) > xmax(пробный объект) или
xmax(пробное тело) < xmin(пробный объект) или
ymin (пробное тело) > ymax(пробный объект) или
ymax (пробное тело) < ymin(пробный объект),
то пробное тело не может экранировать ни одного ребра пробного объекта. Перейти к следующему пробному телу. В противном случае:
Провести предварительные проверки протыкания, чтобы увидеть, не протыкается ли пробное тело пробным объектом и существует ли возможность частичного экранирования первого последним.
Сравнить максимальное значение z у пробного объекта с минимальным значением z у пробного тела.
Если zmax(пробный объект) < zmin (пробное тело), то протыкание невозможно. Перейти к следующему телу. В противном случае:
Проверить видимое протыкание.
Если zmin(пробный объект) > zmax (пробное тело), то пробный объект может проткнуть переднюю грань пробного тела.
Установить флаг видимого протыкания для последующего использования. Занести проткнутое тело в список протыканий.
Если xmax(пробное тело) > xmin(пробный объект) или
xmin (пробное тело) < xmax(пробный объект),
то пробный объект может проткнуть бок пробного тела.
Установить флаг видимого протыкания для последующего использования. Завести тело в список протыканий.
Если ymax (пробное тело) > ymin(пробный объект) или
ymin (пробное тело) < ymax(пробный объект),
то пробный объект может проткнуть верх или виз пробного тела.
Установить флаг видимого протыкания для последующего использования. Занести проткнутое тело в список протыканий.
Если список протыканий пуст, то устанавливать флаг протыкания не надо.
Провести проверки экранирования ребер:
Вычислить s и d для ребра.
Вы числить p, q, w для каждой плоскости, несущей грань пробного тела.
Проверка полной видимости. Если ребро полностью, видимо, то перейти к следующему ребру.
Сформировать уравнения hj = 0 и решить их, объединяя попарно и включив в систему уравнения границ t = 0 и t = 1. Если установлен флаг видимого протыкания, то в систему надо включить и уравнение границы a = 0. Запомнить точки протыкания. В противном случае границу a = 0 не учитывать.
Для каждой пары (t, a), являющейся решением проверить выполнение условий 0 £ t £ 1, a ³ 0 и hj > 0 для всех других плоскостей. Если эти условия выполнены, то найти tmaxmin и tminmax.
Вычислить видимые участки отрезков и сохранить их для последующей проверки экранирования телами с более низкими приоритетами.
Определить видимые отрезки, связывающие точки протыкания:
Если флаг видимого протыкания не установлен, перейти к процедуре визуализации.
Если точек протыкания не обнаружено, перейти к процедуре визуализации.
Сформировать все возможные ребра, соединяющие точки протыкания, для пар тел, связанных отношением протыкания.
Проверить экранирование всех соединяющих ребер обоими телами, связанными отношением протыкания.
Проверить экранирование оставшихся соединяющих ребер всеми прочими телами сцены. Запомнить видимые отрезки.
Визуализировать оставшиеся видимые отрезки ребер.
3.3. Алгоритм использующий Z-буфер
Это один из простейших алгоритмов удаления невидимых поверхностей. Работает этот алгоритм в пространстве изображения. Идея z-буфера является простым обобщением идеи о буфере кадра. Буфер кадра используется для запоминания атрибутов (интенсивности) каждого пиксела в пространстве изображения. Z-буфер - это отдельный буфер глубины, используемый для запоминания координаты z или глубины каждого видимого пиксела в пространстве изображения. В процессе работы глубина или значение z каждого нового пиксела, который нужно занести в буфер кадра, сравнивается с глубиной того пиксела, который уже занесен в z-буфер. Если это сравнение показывает, что новый пиксел расположен впереди пиксела, находящегося в буфере кадра, то новый пиксел заносится в этот буфер и, кроме того, производится корректировка z-буфера новым значением z. Если же сравнение дает противоположный результат, то никаких действий не производится. По сути, алгоритм является поиском по x и y наибольшего значения функции z (z, y).
Главное преимущество алгоритма - его простота. Кроме того, этот алгоритм решает задачу об удалении невидимых поверхностей и делает тривиальной визуализацию пересечений сложных поверхностей. Сцены могут быть любой сложности. Поскольку габариты пространства изображения фиксированы, оценка вычислительной трудоемкости алгоритма не более чем линейна. Поскольку элементы сцены или картинки можно заносить в буфер кадра или в z-буфер в произвольном порядке, их не нужно предварительно сортировать по приоритету глубины. Поэтому экономится вычислительное время, затрачиваемое на сортировку по глубине.