Трехмерная компьютерная графикаРефераты >> Программирование и компьютеры >> Трехмерная компьютерная графика
Алгоритм трассировки лучей для простых непрозрачных поверхностей можно представить следующим образом:
Подготовка данных для сцены:
Создать список объектов, содержащий по меньшей мере следующую информацию:
Полное описание объекта: тип, поверхность, характеристики и т. п.
Описание сферической оболочки: центр и радиус,
Флаг прямоугольной оболочки. Если этот флаг поднят, то будет выполнен габаритный тест с прямоугольной оболочкой, если же он опушен, то тест выполняться не будет. Заметим, что габаритный тест необходим не для всех объектов, например для сферы он не нужен.
Описание прямоугольной оболочки: xmin, xmax,ymin, ymax,zmin, zmax.
Для каждого трассируемого луча:
Выполнить для каждого объекта трехмерный тест со сферической оболочкой в исходной системе координат. Если луч пересекает эту сферу, то занести объект в список активных объектов. Если список активных объектов пуст, то изобразить данный пиксел с фоновым значением интенсивности и продолжать работу. В противном случае, перенести и повернуть луч так, чтобы он совместился с осью z. Запомнить это комбинированное преобразование.
Для каждого объекта из списка активных объектов:
Если флаг прямоугольной оболочки поднят, преобразовать, используя комбинированное преобразование, эту оболочку в систему координат, в которой находится луч1 и выполнить соответствующий тест. Если пересечения с лучом нет, то перейти к следующему объекту. В противном случае преобразовать, используя комбинированное преобразование, объект в систему координат, в которой находится луч, и определить его пересечения с лучом, если они существуют. Занести все пересечения в список пересечений.
Если список пересечений пуст, то изобразить данный пиксел с фоновым значением интенсивности.
В противном случае определить z для списка пересечений.
Вычислить преобразование, обратное комбинированному преобразованию.
Используя это обратное преобразование, определить точку пересечения в исходной системе координат.
Изобразить данный пиксел, используя атрибуты пересеченного объекта и соответствующую модель освещенности.
Заметим, что алгоритм определения видимости простых непрозрачных поверхностей, не требует вычислять преобразование, обратное комбинированному, или определять точку пересечения в исходной системе координат, если в модели освещения не возникает необходимость включения в алгоритм свойств поверхности объекта или ее ориентации в точке пересечения. Эти шаги включены в данный алгоритм для полноты и удобства при реализации алгоритма трассировки лучей с учетом общей модели освещенности.
Две модификации этого простого алгоритма заметно повышают его эффективность. Первая модификация основывается на понятии кластерных групп пространственно связанных объектов. Например, предположим, что сцена состоит из стола, на котором стоят ваза с фруктами и блюдо с конфетами. В вазе лежат апельсин, яблоко, банан и груша. Блюдо содержит несколько конфет разных форм и цветов. Вводятся сферические оболочки для групп или кластеров связанных объектов, например для вазы и всех плодов в ней, для блюда и всех конфет в нем, а также для стола и всех предметов на нем. Сферические оболочки, охватывающие более чем один объект, называются сферическими кластерами. Если это необходимо, то можно ввести и прямоугольные кластеры Вводится, кроме того, наибольший сферический кластер, именуемый сферой сцены, которая охватывает все объекты в этой сцене. Затем сферические оболочки обрабатываются в иерархическом порядке. Если луч не пересекает сферу сцены, то он не может пересечь и ни одного из ее объектов. Следовательно, пиксел, соответствующий этому лучу, будет изображен с фоновым значением интенсивности. Если же луч пересекает сферу сцены, то на пересечение с лучом проверяются сферические кластеры и сферические оболочки объектов, не содержащихся ни в одном из сферических кластеров, принадлежащих кластеру сцены. Если луч не пересекает сферический кластер, то сам этот кластер и все объекты или кластеры, содержащиеся в нем, исключаются из дальнейшего рассмотрения. Если ли же луч пересекает кластер, то эта процедура рекурсивно повторяется до тех пор, пока не будут рассмотрены все объекты. Если луч пересекает сферическую оболочку некоего объекта в какой-нибудь точке, то этот объект заносится в список активных объектов. Эта процедура значительно сокращает количество вычислений точек пересечения луча со сферическими оболочками и тем самым повышает эффективность всего алгоритма.
Вторая модификация использует упорядочение по приоритет чтобы сократить число объектов, для которых вычисляются пересечения с лучом. Вместо того, чтобы немедленно производить вычисление пересечения объекта к лучом, как это делается в изложенном выше простом алгоритме, объект помещается в список пересечённых объектов. После рассмотрения всех объектов сцены преобразованный список пересеченных объектов упорядочивается по приоритету глубины. Для определения приоритетного порядка можно использовать центры сферических оболочек или наибольшие (наименьшие) значения z прямоугольных оболочек. Пересечения луча с объектами из списка пересеченных объектов определяются в порядке их приоритетов. К сожалению точка пересечения луча с первым из объектов в упорядоченном по приоритетам списке пересеченных объектов необязательно будет видимой. Необходимо определить точки пересечения луча со всеми потенциально видимыми объектами из множества {Q} и занести их в список пересечений. Затем модифицированный алгоритм упорядочивает этот список пересечений так, как это делалось и в простом алгоритме. К счастью, множество {Q} потенциально видимых объектов обычно значительно меньше числа объектов в списке пересеченных лучом. Следовательно, эффективность алгоритма возрастет. Обе эти модификации применимы также и к общему алгоритму трассировки лучей, учитывающему отражение, преломление и прозрачность.
Изложенный выше простой алгоритм не использует того обстоятельства, что некоторые грани многогранника являются нелицевыми и их можно сразу удалить, не учитывается здесь и возможная когерентность сцены. Например, несуществен порядок обработки пикселов. Вместе с тем рассмотрение этих пикселов в порядке сканирования строки развертки позволило бы воспользоваться в алгоритме когерентностью сканирующих строк. Другой подход может заключаться в подразделении сцены, причем учет когерентности областей привел бы к уменьшению числа объектов, рассматриваемых для каждого луча и, следовательно, к повышению эффективности алгоритма. Хотя использование подобных приемов повышает эффективность алгоритма определения видимости непрозрачных поверхностей их невозможно применить в общем алгоритме трассировки лучей, который учитывает отражение, преломление и прозрачность. Например, если в алгоритме учтено отражение, то объект, который полностью закрыт другим объектом, может оказаться видимым, как отражение от третьего объекта. Поскольку метод трассировки лучей является метолом грубой силы, алгоритмы определения видимости непрозрачных поверхностей, обсуждавшиеся ранее, являются более эффективными.