Управление финансами на предприятии
Рефераты >> Финансы >> Управление финансами на предприятии

Fn = Р • (1 + r)w * (1 + f * r) = 120 * (1 + 0,16)2 * 1,04 == 167,93 млн. руб.

б) в этом случае мы имеем дело с ситуацией, когда начисление процентов осуществляется по внутригодовым подпериодам, а продолжительность общего периода действия контракта не равна целому числу подпериодов. Следовательно, нужно воспользо­ваться формулами, когда базисный период равен полугодию, а параметры формул имеют следующие значения: k = 2; f = 0,5; m = 2; r = 16%.

При реализации схемы сложных процентов:

Fn=P*(1 +r/m)m*k*(l+r/m)f= 120*(l+0,08)4.5 = 169,66 млн. руб.

При реализации смешанной схемы:

Fn = Р*(1 + г/m) m*k *(1+ f*r/m) = 120*(1 + 0.08)4*(1 + 1/2*0,16/2) = 169, 79 млн. руб

в) в этом случае продолжительность ссуды кратна продолжите­льности базисного периода и можно воспользоваться обычной формулой сложных процентов, в которой n = 9, а r = 0,16/4 = 0,04.

Fn = 120* (1 + 0,04)9 = 170,8 млн.руб.

В зависимости от частоты начисления процентов наращение суммы осуществляется различными темпами, причем с возраста­нием частоты накопленная сумма увеличивается. Максимально возможное наращение осуществляется при бесконечном дробле­нии годового интервала.

3.6. Эффективная годовая процентная ставка

Различные виды финансовых контрактов могут предусматри­вать различные схемы начисления процентов. Как правило, в этих контрактах оговаривается номинальная процентная ставка, обычно годовая. Эта ставка, во-первых, не отражает реальной эффективности сделки и, во-вторых, не может быть использована для сопоставлений. Для обеспечения сравнительного анализа эф­фективности таких контрактов необходимо выбрать некий пока­затель, который был бы универсальным для любой схемы начис­ления. Таким показателем является эффективная годовая про­центная ставка Rе, обеспечивающая переход от Р к Fn при заданных значениях этих показателей и однократном начислении процентов.

Общая постановка задачи может быть сформулирована сле­дующим образом. Задана исходная сумма Р, годовая процентная ставка (номинальная) r, число начислений сложных процентов m. Этому набору исходных величин в рамках одного года соответствует вполне определенное значение наращенной ве­личины F1. Требуется найти такую годовую ставку Re, которая обеспечила бы точно такое же наращение, как и исходная схема, но при однократном начислении процентов, т.е. m = 1. Иными словами, схемы {Р, F1, г, m > 1} и {Р, F1, Rе, m = 1} должны быть равносильными.

Из формулы (4.7) следует, что в рамках одного года:

F1=P*(1+r/m)m.

Согласно определению эффективной годовой процентной ставки:

F1=P+P*Re=P*(l+Rе)

отсюда: Re=(1+r/m)m-1

Из формулы следует, что эффективная ставка зависит от количества внутригодовых начислений, причем с ростом m она увеличивается. Кроме того, для каждой номинальной ставки можно найти соответствующую ей эффективную ставку; две эти ставки совпадают лишь при m = 1. Именно ставка Re является критерием эффективности финансовой сделки и может быть ис­пользована для пространственно-временных сопоставлений.

Пример: Предприниматель может получить ссуду

а) либо на условиях ежеквартального начисления процентов из расчета 75% годовых,

б) либо на условиях полугодового начисления процентов из расчета 80% годовых. Какой вариант более предпочтителен?

Относительные расходы предпринимателя по обслуживанию ссуды могут быть определены с помощью расчета эффективной годовой процентной ставки — чем она выше, тем больше уровень расходов. вариант (а)

г(е) = (1 + 0,75/4)4 - 1 = 0,99,

вариант (б)

r(e) = (1 + 0,80/2)2 - 1 = 0,96.

Таким образом, вариант (б) является более предпочтитель­ным для предпринимателя. Необходимо отметить, что принятие решения не зависит от величины кредита, поскольку критерием является относительный показатель — эффективная ставка, а она, зависит лишь от номиналь­ной ставки и количества начислений.

Понимание роли эффективной процентной ставки чрезвычай­но важно для финансового менеджера, поскольку принятие реше­ния о привлечении средств, например, банковской ссуды на тех или иных условиях, делается чаще всего исходя из приемлемости предлагаемой процентной ставки, которая в этом случае харак­теризует относительные расходы заемщика. В рекламных проспе­ктах непроизвольно или умышленно внимание на природе ставки обычно не акцентируется, хотя в подавляющем числе случаев речь идет о номинальной ставке, которая может весьма сущест­венно отличаться от эффективной ставки. Рассмотрим простей­ший пример.

Пример: Рассчитать эффективную годовую процентную ставку при различной частоте начисления процентов, если номинальная ставка равна 10%.:

m I 2 4 12 365

Re 0,10 0,1025 0,10381 0,10471 0,10516

Различие между двумя ставками может быть гораздо более разительным при заключении некоторых специальных кредитных договоров, например, при оформлении кредита на условиях до­бавленного процента.

3.7. Понятие приведенной стоимости

Оценивая целесообразность финансовых вложений в тот или иной вид бизнеса, исходят из того, является это вложение более прибыльным (при допустимом уровне риска), чем вложения в государственные ценные бумаги, или нет. Используя несложные методы, пытаются анализировать будущие доходы при мини­мальном, “безопасном” уровне доходности.

Основная идея этих методов заключается в оценке будущих поступлений Fn (например, в виде прибыли, процентов, дивиден­дов) с позиции текущего момента. При этом, сделав финансо­вые вложения, инвестор обычно руководствуется тремя посыла­ми:

а) происходит перманентное обесценение денег (инфляция);

б) темп изменения цен на сырье, материалы и основные средства, используемые предприятием, может существенно отличаться от темпа инфляции;

в) желательно периодическое начисление (или поступление) дохода, причем в размере, не ниже определенного минимума.

Базируясь на этих посылах, инвестор должен оценить, какими будут его доходы в будущем, какую максимально воз­можную сумму допустимо вложить в данное дело исходя из прогнозируемой его рентабельности.

Базовая расчетная формула для такого анализа:

P=Fn/(1+d)n=Fn*FM2(d;n)

где Fn — доход, планируемый к получению в п-м году;

Р — текущая (или приведенная) стоимость, т.е. оценка величины Fn с позиции текущего момента;

d — коэффициент дисконтирования.

Экономический смысл такого представления заключается в следующем: прогнозируемая величина денежных поступлений через п лет (Fn) с позиции текущего момента будет меньше и равна Р (поскольку знаменатель дроби больше единицы). Это означает также, что для инвестора сумма Р в данный момент времени и сумма Fn через n лет одинаковы по своей ценности. Используя эту формулу, можно приводить в сопо­ставимый вид оценку доходов от инвестиций, ожидаемых к поступлению в течение ряда лет. Легко видеть, что в этом случае коэффициент дисконтирования численно равен процент­ной ставке, устанавливаемой инвестором, т.е. тому относитель­ному размеру дохода, который инвестор хочет или может по­лучить на инвестируемый им капитал.


Страница: