О неопределенных бинарных квадратичных формахРефераты >> Математика >> О неопределенных бинарных квадратичных формах
Пример. Квадратичная форма представляет число , т.к. число является значением квадратичной формы при , т.е. равенство выполняется при .
Предложение 3. Эквивалентные бинарные квадратичные формы представляют одно и то же множество целых чисел.
Доказательство. Пусть формы и эквивалентны. Тогда существует унимодулярная целочисленная подстановка переменных:
и, значит,
.
Положив теперь в этом равенстве , получим
,
т.е. форма тоже представляет число . Поскольку отношение эквивалентности бинарных квадратичных форм обладает свойством симметричности (предложение 2) то и любое число, представимое формой будет представимое и формой .
Предложение 3 доказано.
Определение 5. Классом форм называется множество всех бинарных квадратичных форм, собственно эквивалентных форме .
В силу предложения 2 и определения 5 можно сказать, что множество бинарных квадратичных форм данного дискриминанта распадается на классы форм, собственно эквивалентных относительно унимодулярного целочисленного преобразования переменных (2).
Далее, в зависимости от знака дискриминанта бинарные квадратичные формы делятся на определенные и неопределенные формы.
Определение 6. Квадратичная форма дискриминанта называется определенной, если и неопределенной, если . Такое определение подсказано тем, что при бинарная квадратичная форма принимает значения только одного знака (положительные при и отрицательные при ), а при она принимает как положительные, так и отрицательные значения. Теория неопределенных бинарных квадратичных форм существенно отличается от теории определенных форм и мы будем рассматривать в данной работе только неопределенные формы.
Рассмотрим теперь вкратце теорию приведения неопределенных бинарных квадратичных форм. Суть этой теории состоит в выделении в каждом классе так называемых приведенных форм - «стандартных» форм класса. Рассматривая квадратичные формы положительного дискриминанта будем считать ее коэффициенты произвольными вещественными числами. Кроме того будем предполагать, что крайние коэффициенты и формы отличны от нуля и корни уравнения вещественны, различны и иррациональны.
Назовем корень этого уравнения первым, а - вторым корнем формы (см. [1]), причем есть дискриминант формы .
Определение 7. Неопределенная квадратичная форма
с корнями называется приведенной, если .
Покажем, что у приведенной формы выполняются неравенства , , причем и заключаются между и . В самом деле, из условия получаем
,
, , .
Далее, , , т.е. выполняется указанное неравенство . Обратимся теперь к условиям
и . Из них следуют
, (*)
Аналогично имеем
, (**)
Покажем теперь, что . Допустим, что . Тогда из неравенств (*) и (**) следуют
и .