Методы решения некорректно поставленных задачРефераты >> Математика >> Методы решения некорректно поставленных задач
Числовой параметр d характеризует погрешность правой части уравнения (3;0,1). Поэтому представляется естественным определить zd с помощью оператора, зависящего от параметра, значения которого надо брать согласованными с погрешностью d исходных данных ud . Эта согласованность должна быть такой, чтобы при dà0, т. е. при приближении (в метрике пространства U) правой части ud уравнения (3; 0,1) к точному значению uT, приближенное решение zd стремилось бы (в метрике пространства F) к искомому точному решению zt уравнения AzT =uT.
Пусть элементы zT Î F и uT Î U связаны соотношением AzT = uT.
Определение 1. Оператор R(и, d), действующий из пространства U в пространство F, называется регуля-ризирующим для уравнения Az = и (относительно элемента uT), если он обладает свойствами:
1) существует такое число d1 > 0, что оператор R(u, d) определен для всякого d, 0<=d<=d1, и любого udÎU такого, что
rU(ud,uT)<= d;
2) для всякого e > 0 существует d0=d0(e, ud)<=d1 такое, что из неравенства
rU(ud,uT)<= d<= d0;
следует неравенство
rF(zd,zT)<= e,
где
zd=R(ud,d).
Здесь не предполагается, вообще говоря, однозначность оператора R(u,d). Через zd обозначается произвольный элемент из множества {R(ud,d)} значений оператора R(ud,d).
3.1.2. В ряде случаев целесообразнее пользоваться другим определением регуляризирующего оператора (P.O.).
Определение 2. Оператор R(u, a), зависящий от параметра a и действующий из U в F, называется регуляризирующим для уравнения Az=и (относительно элемента uT), если он обладает свойствами:
1) существуют такие числа d1>0, a1>0, что оператор R(u, a ) определен для всякого a, принадлежащего промежутку (0, a1), и любого uÎU, для которого
rU(u,uT)<=d1;
2) существует такой функционал a=a(u, d), определенный на множестве Ud1º{u; r(u,uT)<= d1} элементов иÎU, что для любого e > 0 найдется число d(e)<=d1 такое, что если u1ÎU и rU(u1,uT)<= d<= d(e), то
rF(za,zT)<= e , где
za=R(u1, a(u1,d)).
В этом определении не предполагается однозначность оператора R(u1, a(u1,d)). Следует отметить, что при a= d получаем определение 1 .
3.1.3. Если rU(ud,uT)<= d, то известно, что в качестве приближенного решения уравнения (3; 0,1) с приближенно известной правой частью ud можно брать элемент za=R(d, a), полученный с помощью регуляризирующего оператора R(u, a ), где a=a(ud)=a1(d) согласовано с погрешностью исходных данных ud. Это решение называется регуляризованным решением уравнения (3; 0,1). Числовой параметр a называется параметром регуляризации. Очевидно, что всякий регуляризирующий оператор вместе с выбором параметра регуляризации a, согласованного с погрешностью исходных данных ud , a=a(ud), определяет устойчивый к малым изменениям правой части и метод построения приближенных решений уравнения (3;0,1). Если известно, что rU(ud,uT)<= d, то согласно определению регуляризирующего оператора можно так выбрать значение параметра регуляризации a=a(ud) ,
что при dà0 регуляризованное решение R(ud,a(ud)) стремится (в метрике F) к искомому точному решению zT, т. е. rF(zT,za(ud)). Это и оправдывает предложение брать в качестве приближенного решения уравнения (3; 0,1) регуляризованное решение.
Таким образом, задача нахождения приближенного решения уравнения (3; 0,1), устойчивого к малым изменениям правой части, сводится:
а) к нахождению регуляризирующих операторов;
б) к определению параметра регуляризации a по дополнительной информации о задаче, например, по величине погрешности, с которой задается правая часть ud.
Описанный метод построения приближенных решений называется методом регуляризации.
3.2. О решении вырожденных и плохо обусловленных систем линейных алгебраических уравнений
3.2.1. Известно, с какими трудностями связано решение так называемых плохо обусловленных систем линейных алгебраических уравнений: малым изменениям правых частей таких систем могут отвечать большие (выходящие за допустимые пределы) изменения решения.
Рассмотрим систему уравнений
Аz=u, (3; 2,1)
где А — матрица с элементами aij, А ={aij}, z — искомый вектор с координатами zj , z={zj}, и — известный вектор с координатами иi ,u= {ui}, i, j =1, 2, ., п. Система (3; 2,1) называется вырожденной, если определитель системы равен нулю, detA = 0. В этом случае матрица А имеет равные нулю собственные значения. У плохо обусловленных систем такого вида матрица А имеет близкие к нулю собственные значения.
Если вычисления производятся с конечной точностью, то в ряде случаев не представляется возможным установить, является ли заданная система уравнений вырожденной или плохо обусловленной. Таким образом, плохо обусловленные и вырожденные системы могут быть неразличимыми в рамках заданной точности. Очевидно, такая ситуация имеет место в случаях, когда матрица А имеет достаточно близкие к нулю собственные значения.
В практических задачах часто правая часть и и элементы матрицы А, т. е. коэффициенты системы (3; 2,1), известны приближенно. В этих случаях вместо системы (3;2,1) мы имеем дело с некоторой другой системой Az=и такой, что ||A-A||<=h, ||u-u||<= d, где смысл норм обычно определяется характером задачи. Имея
вместо матрицы А матрицу A, мы тем более не можем высказать определенного суждения о вырожденности или невырожденности системы (3; 2,1).
В этих случаях о точной системе Аz=u, решение которой надо определить, нам известно лишь то, что для матрицы А и правой части и выполняются неравенства
||A-A||<=h, ||u-u||<= d. Но систем с такими исходными данными (А, и) бесконечно много, и в рамках известного нам уровня погрешности они неразличимы. Поскольку вместо точной системы (3; 2,1) мы имеем приближенную систему Аz= и, то речь может идти лишь о нахождении приближенного решения. Но приближенная система Аz=и может быть неразрешимой. Возникает вопрос:
что надо понимать под приближенным решением системы (3; 2,1) в описанной ситуации?
Среди «возможных точных систем» могут быть и вырожденные. Если они разрешимы, то имеют бесконечно много решений. О приближенном нахождении какого из них должна идти речь?
Таким образом, в большом числе случаев мы должны рассматривать целый класс неразличимых между собой (в рамках заданного уровня погрешности) систем уравнений, среди которых могут быть и вырожденные, и неразрешимые. Методы построения приближенных решений систем этого класса должны быть одними и теми же, общими. Эти решения должны быть устойчивыми к малым изменениям исходных данных (3; 2,1).
В основе построения таких методов лежит идея «отбора». Отбор можно осуществлять с помощью специальных, заранее задаваемых функционалов W[ z ] , входящих в постановку задачи.
Неотрицательный функционал W[ z ] , определенный на всюду плотном в F подмножестве F1 множества F, называется стабилизирующим функционалом, если: