Методы решения некорректно поставленных задачРефераты >> Математика >> Методы решения некорректно поставленных задач
Возможность определения приближенных решений некорректно поставленных задач, устойчивых к малым изменениям исходных данных, основывается на использовании дополнительной информации относительно решения. Возможны различные типы дополнительной информации.
В первой категории случаев дополнительная информация, носящая количественный характер, позволяет сузить класс возможных решений, например, до компактного множества, и задача становится устойчивой к малым изменениям исходных данных. Во второй категории случаев для нахождения приближенных решений, устойчивых к малым изменениям исходных данных, используется лишь качественная информация о решения (например, информация о характере его гладкости).
В настоящей главе будет рассмотрен метод подбора, имеющий широкое практическое применение, метод квазирешения, а также метод замены исходного уравнения близким ему и метод квазиобращения. В качестве некорректно поставленной задачи мы будем рассматривать задачу решения уравнения
Az=u (2; 0,1)
относительно z, где uÎU, zÎF, U и F—метрические пространства. Оператор А отображает F на U. Предполагается, что существует обратный оператор А-1, но он не является, вообще говоря, непрерывным.
Уравнение (2; 0,1) с оператором А, обладающим указанными свойствами, будем называть операторным уравнением первого рода, или, короче,— уравнением первого рода.
2.1. Метод подбора решения некорректно поставленных задач
2.1.1. Широко распространенным в вычислительной практике способом приближенного решения уравнения (2; 0,1) является метод подбора. Он состоит в том, что для элементов z некоторого заранее заданного подкласса возможных решений М (МÎF) вычисляется оператор Az, т. е. решается прямая задача. В качестве приближенного решения берется такой элемент z0 из множества М, на котором невязка rU(Az,u) достигает минимума, т. е.
rU(Az0,u)=inf rU(Az,u)
zÎM
Пусть правая часть уравнения (2;0,1) известна точно, т. е. и=uT, и требуется найти его решение zT. Обычно в качестве М берется множество элементов z, зависящих от конечного числа параметров, меняющихся в ограниченных пределах так, чтобы М было замкнутым множеством конечномерного пространства. Если искомое точное решение zT уравнения (2; 0,1) принадлежит множеству М, то и достигается эта нижняя граница на точном решении zT. Если уравнение (2;0,1) имеет единственное решение, то элемент z0, минимизирующий rU(Az,и), определен однозначно.
Практически минимизация невязки rU(Az,и) производится приближенно и возникает следующий важный вопрос об эффективности метода подбора, т. е. о возможности как угодно приблизиться к искомому точному решению.
Пусть {zn} — последовательность элементов, для которой rU(Azn,u) ®0 при n®¥. При каких условиях можно утверждать, что при этом и rF(zn,zT) ®0, т. е. что {zn} сходится к zT?
Это вопрос обоснования эффективности метода подбора.
2.1.2. Стремление обосновать успешность метода подбора привело к установлению общефункциональных требований, ограничивающих класс возможных решений М, при которых метод подбора является устойчивым и zn®zT. Эти требования заключаются в компактности множества М и основываются на приводимой ниже известной топологической лемме.
Лемма. Пусть метрическое пространство F отображается на метрическое пространство U и Uo — образ множества Fo, FoÌ F, при этом отображении. Если отображение F®U непрерывно, взаимно однозначно и множество Fo компактно на F, то обратное отображение Uo®Fo множества Uo на множество Fo также непрерывно по метрике пространства F.
Доказательство. Пусть z — элементы множества F (zÎF), а u—элементы множества U (uÎU). Пусть функция u=j(z) осуществляет прямое отображение F®U, а функция z=y(u)—обратное отображение U®F.
Возьмем произвольный элемент u0 из Uo. Покажем, что функция y(u) непрерывна на u0. Предположим, что это неверно. Тогда существует такое число e1 > 0, что для всякого d > 0 найдется элемент и1 из Uo, для которого rU(и1, и0) <d, в то время как rF(z1,z0)>= e1. Здесь z=y(u1), z0=y(u0) и z1ÎFo, z0ÎF0.
Возьмем последовательность {dn} положительных чисел dn , сходящуюся к нулю при п®¥. Для каждого dn найдется элемент un1 из Uo, для которого rU(иn1, и0)<dn , но rF(zn1,z0)>= e1 , где zn1=y(un1). Очевидно, последовательность {un1} сходится к элементу u0. Так как zn1 принадлежат компактному на F множеству Fo, то из последовательности {zn1} можно выбрать подпоследовательность {Z1nk}, сходящуюся по метрике F к некоторому элементу z0 ÎF. При этом z01¹z0 , так как для всякого nk rF(Z1nk,z0)>= e1 , следовательно и rF(z10,z0)>= e1 . Этой подпоследовательности {Z1nk} отвечает последовательность элементов u1nk= j (Z1nk) из Uo, сходящаяся к u10= j(z10) и являющаяся подпоследовательностью последовательности {u1n}. Так как последовательность {u1n} сходится к и0 =j(z0), то u10=j(z10)=u0=j(z0) , т. е. j(z0)= j(z10). В силу взаимной однозначности отображения F®U z10=z0, что противоречит ранее установленному неравенству z10¹z0. Лемма доказана.
Эту лемму можно сформулировать короче.
Если отображение FoàUo компакта Fo на множество Uo взаимно однозначно и непрерывно, то обратное отображение UoàFo также непрерывно.
Эквивалентность этих формулировок следует из того, что замыкание F*0 множества Fo, компактного на F, является компактом.
Таким образом, минимизирующая последовательность {zn} в методе подбора сходится к zT при nà¥, если:
а)zT принадлежит классу возможных решений М;
б) множество М — компакт.
Пусть оператор А непрерывен и вместо точной правой части uT мы имеем элемент ud такой, что rU(ud,uT )<= d, причем ud принадлежит множеству AM (образу множества М при отображении его с помощью оператора A) и М есть компакт. Пусть {dn} — последовательность положительных чисел таких, что dn à0 при nàоо. Для каждого п методом подбора можно найти такой элемент zdn , что rU(A zdn ,ud)<=dn . Элементы zdn будут близки к решению zT уравнения Az=uT. В самом деле, при отображении с помощью непрерывного оператора образ AM компакта М есть компакт и, следовательно, по лемме обратное отображение, осуществляемое оператором A-1, непрерывно на AM. Так как
rU(A zdn ,u)<= rU(A zn ,ud)+rU(ud,uT),
то
rU(A zdn ,uT)<=dn+d=gdn.
Из этого неравенства и из непрерывности обратного отображения АМ à М следует, что rF(zdn ,zT)<= e( gdn) , причем e( gdn)à0 при gdnà0. Таким образом, при нахождении приближения zdn к zT надо учитывать уровень погрешности d правой части ud.
2.1.3. На основе изложенных соображений М. М. Лаврентьев сформулировал понятие корректности по Тихонову. В применении к уравнению (2; 0,1) задача называется корректной по Тихонову, если известно, что для точного значения u=uT существует единственное решение zT уравнения (2; 0,1), AzT=uT, принадлежащее заданному компакту М. В этом случае оператор А-1 непрерывен на множестве N=AM и, если вместо элемента uT нам известен элемент ud такой, что rU( uT, ud)<=d и udÎN, то в качестве приближенного решения уравнения (2; 0,1) с правой частью u= ud можно взять элемент zd=A-1ud . При dà0 (udÎN) zd будет стремиться к zT. Множество F1 (F1 Ì F), на котором задача нахождения решения уравнения (2; 0,1) является корректно поставленной, называют классом корректности. Так, если оператор А непрерывен и осуществляет взаимно однозначное отображение, то компакт М, к которому принадлежит zT, является классом корректности для уравнения (2; 0,1). Таким образом, если задача (2; 0,1) корректна по Тихонову и правая часть уравнения uÎAM, то метод подбора с успехом может быть применен к решению такой задачи. На первый вопрос дан исчерпывающий ответ.