Математический факультатив как ведущая форма профессиональной дифференциации в преподавании математики в средней школеРефераты >> Математика >> Математический факультатив как ведущая форма профессиональной дифференциации в преподавании математики в средней школе
Ряд глубоких вопросов модернизации факультативных занятий, обучения учащихся в классах и школах с углубленным теоретическим и практическим изучением математики содержится в статьях В.В. Фирсова и С.И. Шварцбурда. Исходя из понятия математической культуры и этапов процесса применения математики к любой практической задаче авторы приходят к следующему выводу:
1. Программы факультативных занятий должны существенно связывать теоретический материал общего характера с приложениями математики, вовлекая в процесс обучения знания, умения, навыки, характерные для этапов формирования и интерпретации.
2. Работа на факультативных занятиях по математике должна быть обеспечена не одной, а несколькими программами.
3. Система общего математического образования должна строится на базе обучения учащихся элементам математической культуры, относящимся ко всем трем этапам процесса применения математики (10).
Примечательной особенностью факультативного курса является то, что программа курса для каждого класса составлена из ряда основных тем (независимых друг от друга), содержание которых непосредственно примыкает к общему курсу математики. Однако содержание учебной работы учащихся на факультативных занятиях определяется не только математическим содержанием изучаемых тем и разделов, но и различными методическими факторами:
1.Характером объяснения учителя;
2. Соотношением теории и учебных упражнений;
3.Содержанием познавательных вопросов и задач;
4.Сочитанием самостоятельной работы и коллективного обсуждения полученных каждым учащимся результатов. Как показывает анализ педагогической и методико-математической литературы и педагогический опыт особое значение учителя и методисты придают вопросам организации самостоятельной работы учащихся на факультативных занятиях.
Для современной школы характерно включение самостоятельной работы во все другие виды деятельности, стремление учителя сделать ее обязательной частью любого этапа обучения математике, будь то обучение нового материала или его применение на практике. Коснемся вопроса методики преподавания математики на факультативных занятиях. При выборе методов и приемов обучения на факультативных занятиях необходимо учитывать
содержание факультативного курса, уровень развития и подготовленности учащихся, их интерес к тем или иным разделом программы. Одно из важнейших требований к методам состоит в активизации мышления учащихся, развитии самостоятельности в различных формах ее проявлении.
На факультативных занятиях могут использоваться разнообразные формы проведения занятий, лекций практические работы, обсуждение заданий по дополнительной литературе, доклады учеников, составление рефератов, экскурсий.
Рассмотрим некоторые из них предложенных Никольской и Фирсовым.
Как показывает опыт преподавания, применение лекционно-семинарской системы при изучении ряда тем курса позволяет учителю излагать учебный материал крупными порциями и на этой основе высвободить время для повторения вопросов теории и решении задач. Кроме того, такая организация занятий обеспечивает усиление практической и прикладной направленности преподавании, приобщение учащихся к активной работе с учебной литературой, повышения уровня их подготовки. Как правило одна две лекции на которых излагается весь теоретический материал изучаемого раздела. Одна из существенных особенностей школьной лекции заключается в том, что учитель непрерывно следит за процессом усвоения материала непосредственно на уроке.
Уроки практических занятий. Основным видом занятий является самостоятельная работа учащихся по закреплению и углублению теоретического материала, изложенного на лекции. На уроках практических занятий проводится целенаправленная работа по выработке у учащихся умений и навыков решения основных типов задач.
Уроки-семинары. Возможно проведение семинаров различных типов.
Наибольшее распространение у учителей математики получили семинары, посвященные повторению, углублению и обобщению пройденного материала.
По своим дидактическим целям они служить также приобретению новых знаний, обучению самостоятельному применению знаний в нестандартных ситуациях и др. [11]
Полезная форма работы подготовка учениками рефератов. Выполнение таких заданий важно прежде всего в отношении развития навыков самообразования, удовлетворение индивидуальных интересов учеников. Одновременно индивидуальное задание должно иметь ценность для всех участников факультативной группы. Очень большое значение для успешности усвоения материала имеет подбор задач.
Вводные задачи на факультативных занятьях преследует цель включения учащихся в самостоятельную творческую работу, подчас учитель может намеренно привести задачу, способную поставить учеников в тупик. Остановимся вкратце на использовании наглядных и технических средств обучения на факультативных занятиях. Оно во многих случаях позволяет активизировать познавательную деятельность, не говоря о том, что некоторые виды технических средств ( например, применение кинофрагментов) обладают исключительно большими возможностями наглядного показа материала обучения.
И в заключении хочется сказать, что прежде всего факультативные занятия должны быть интересными, увлекательными для школьников. Хорошо известно, что занимательность изложений помогает раскрытию содержания сложных научных понятий и проблем. Занимательность поможет школьникам освоить факультативный курс, содержащиеся в нем идеи и методы математической науки, логику, и приемы творческой деятельности. В этом отношении цель учителя - добиться понимания учениками того, что они подготовлены к работе над сложными проблемами, однако для этого необходима заинтересованность предметом, трудолюбие, владение навыками, организации своей работы. [34]
2.2 Методические рекомендации по организации математических
факультативов в средней общеобразовательной школе.
Для разработки рекомендаций по организации математических факультативов, основываясь на приведенных в №1 главе 2 замечаниях и предложениях сформулируем некоторые общие требования взаимосвязанного построения факультативных занятий и уроков по математике:
1. Преемственность в содержании, методах и формах организации занятий по математике должна определяться целями обучения математики, всестороннего развития и воспитания учащихся.
2. Взаимосвязанное построение уроков и факультативных занятий по математики не должно противоречить дидактическим принципам в обучении математики.
3. Не должно быть противоречий с научно обоснованными психолого-педагогическими требованиями, направлениями такими, как: изучение новых понятий на основе известных; включение этих понятий в круг имеющихся у учащихся знаний; опора при изучении математических абстракций на конкретные модели; использование практических возможностей приложения математики не только на развивающем этапе изучения данного вопроса, но и в качестве мотива, обосновывающего необходимость изучения этого раздела, вопроса.