Математические основы теории системРефераты >> Математика >> Математические основы теории систем
Оценку процесса ОУ можно произвести путем интегрирования целевой функции за все время управления, т.е. за критерий качества принять функционал
T
(12) J(u)= ⌡ qU[x(t),u(t)]dt
0
В динамических задачах управления наряду с ограничениями вида (5), определяющих пространство допустимых управлений V, приходится иметь дело с интегральными ограничениями вида:
T
(13) ⌡ H [x(t),u(t)]dt ≤ k = const
0
Оптимальным называют управление u*(t), выбираемого из пространства допустимых уравнений V, такое, которое для объекта описываемого дифференциальным уравнением x=qv(u, x), x(0)=C, минимизирует критерий качества (12) при заданных ограничениях на используемые ресурсы (13).
ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ОПТИМИЗАЦИИ.
В общей задаче оптимизации требуется найти вектор x=(x(1), , x(n)) из допустимой области Х, который обращает в min целевую функцию q(х), т.е. такой вектор х*∈X, для которого выполняется условие:
(14) q(x*) ≤ q(x) для всех х∈Х
Если такой вектор х* существует, то он определяет слабый глобальный минимум q*(х) в допустимой области Х. Этот минимум называют слабым, т.к. он удовлетворяет нестрогому (слабому) неравенству, глобальным или абсолютным, потому что неравенство справедливо для любого х∈X. Минимум при х=х* называют сильным, если имеет место q(x*)<q(x) для x≠x*. Если поменять знаки неравенств, получим слабый и сильный максимум. Однако max q(x) дает min q(x), поэтому в дальнейшем рассматриваем задачу минимизации. Сильный глобальный минимум всегда единственен. Слабый глобальный минимум допускает не единственность оптимальной точки, т.к. х, удовлетворяющий условию q(х)=q(х*), так же является оптимальной точкой.
Хотя цель задачи оптимизации - получение глобального минимума целевой функции, при ее решении важное значение имеет понятие локального или относительного минимума.
Минимум в точке х=х* называется локальным (относительным), если найдется такая окрестность Qξ(х*) точки х*, что для всех х∈Qξ(x*) имеет место q(х*)≤q(х).
Если функция q(х) дифференцируема, то задача отыскания локальных минимумов сводится к нахождению стационарных точек, в которых обращаются в нуль частные производные функции q(x)
_
(15) dq(x)/dx(i)=0, i=1,n
КЛАССИЧЕСКАЯ ЗАДАЧА ОПТИМИЗАЦИИ.
Эта задача состоит в нахождении минимума целевой функции q(х), где х=(х(1), ., х(т)) - точка в пространстве R(т) при наличии ограничений типа равенств:
_
(16) fi(x)=0, i=1,m, m<n
Если ограничения (16) имеют место ,то минимум функции q(х) называют условным минимумом. Если ограничения (16) отсутствуют, то говорят о безусловном минимуме, нахождение которого сводится к определению и исследованию стационарных точек функции q(х).
Классический способ решения данной задачи состоит в том, что уравнение (16) используется для исключений из рассмотрения m - переменных. При этом целевая функция приводится к виду:
(17) q(x(1), .,x(т))=q1(y(1), ., y(т)),
где через у(1), ., у(т) обозначены не исключенные переменные. Задача состоит теперь в нахождении значений у(1), .,у(т) которые обращают в минимум функцию q1 и на которые не наложено ни каких ограничений, т.е. сводится к задаче на безусловный экстремум.
ВЫПУКЛЫЕ И ВОГНУТЫЕ ФУНКЦИИ.
Большинство известных методов решения задачи оптимизации сводится к исследованию характера функции q(х) в окрестности рассматриваемого значения x, т.е. к выяснению того, не является ли точка х точкой относительного минимума (максимума). При этом задача усложняется, если целевая функция может иметь в допустимой области значений Х не один, а несколько минимумов или максимумов. Поэтому значительный интерес представляют также задачи, в которых целевая функция имеет всего один максимум или минимум. Для выявления классов таких задач фундаментальную роль играют понятия выпуклости и вогнутости функций.
Пусть f(х) - некоторая функция, заданная на выпуклом множестве Х, ах1, x2 - две произвольные точки из х, х=ℷх1+(1-ℷ)х2; 0≤1≤1; - произвольная точка отрезка, соединяющая х1 и х2. Рассмотрим также отрезок z=ℷf(х1)+(1-ℷ)f(х2), соединяющий значения f(х1) и f(х2) функции f(х).
Функцию f(х) называют выпуклой, если она целиком лежит ниже отрезка, соединяющего две ее произвольные точки при любых х1 и х2 и при любом 0≤ℷ≤1 значении функции в точке х будут не больше значений z отрезка, соединяющего f(х1) и f(х2) Функцию называют вогнутой, если она целиком лежит выше отрезка соединяющего две ее произвольные точки.
ЗАДАЧИ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ.
Постановка задачи.
В этой задаче требуется найти значение многомерной переменной х=(х(1), ., х(n)), минимизирующее целевую функцию q(х) при условии, когда на переменную х наложены ограничения: _
(20) fi(x)≤0, i=1,n
а переменные х(j), не отрицательны.
МЕТОД ШТАФНЫХ ФУНКЦИЙ.
Задача минимизации целевой функции q(х) с ограничениями (20) может, быть сведена к задаче на безусловный экстремум видоизменением целевой функции путем добавления к ней функции штафа. Общая идея метода штафных функций состоит в построении последовательности новых целевых функций.
(21) Qk(x)=q(x)+rkΨ(x), r=1,2,
где Ψ(х)-функция штафа, принимающая по возможности малые (желательно нулевые) значения внутри допустимой области, а rk, к=1,2, . - плоскость возрастающих положительных чисел параметров штрафа. При ограничении вида (20), функция штрафа:
m
(22) Ψ(х)= ∑ (fi+(x))2
i=1
где fi+(х) - срезка функции fi(x), равная нулю, если fi(х)≤0 и равная fi(х), если fi(х)≥0.
Алгоритм решения задачи состоит в следующем:
а) выбираем произвольное начальное приближение х0 и монотонно возрастающую последовательность чисел r→∞
б) при R=1,2, , начиная с хk-1 решаем задачу безусловной минимизации по х функции Qk(х), в результате чего находим очередное приближение xk к решению исходной задачи.
ОГРАНИЧЕНИЯ ТИПА РАВЕНСТВ И НЕОТРИЦАТЕЛЬНОСТЬ ПЕРЕМЕННЫХ.
Простейшей задачей НЛП является задача минимизации q(x) с ограничениями типа равенств
_
(24) fj(x)=0, j=1,m _
и с требованием не отрицательности переменных х(i), i=1,n. В точки х оптимального решения выполняются соотношения:
(25) L(x,ℷ)=q(x)
Пусть х - точка, соответствующая оптимальному решению. Она может быть или внутренней, или граничной точкой допустимой области х≥0, т.е. каждая из ее компонент, будет удовлетворять либо условию х(i)>0, либо условию х(i)=0.
Если х(i)>0, то отклонения от точки х возможны как в сторону увеличения, так в сторону уменьшения х(i). Но поскольку х - оптимальная точка, то должно быть dq(x)/dx(i)-0
Если х(i) лежит на границе допустимой области, т.е. х(i)=0, то отклонения от оптимальной точки возможны в сторону увеличения dq(x)/dx(i)>0. Необходимые условия того, что точка х - решение задачи:
dL(x,ℷ) =0, если x(i)>0; _