Проявление симметрии в различных формах материиРефераты >> Естествознание >> Проявление симметрии в различных формах материи
Разумеется, такой переход к изучению кристаллов с нарушенной структурой стал возможным и исторически, и логически только после известного завершения учения об идеальных кристаллах. Он привел, как известно, к обоснованию молекулярной биологии. Опираясь на учение о последних и зная реальные кристаллы, стало возможным классифицировать различные типы нарушений. По Б. К. Вайпштсйну, основные их формы следующие: сдвиги, повороты, нарушения сетки и параллельности цепей; остальные их формы выводятся в результате комбинирования основных. К сказанному добавим, что в одних и тех же кристаллах во времени наблюдаются как процессы увеличения, так и уменьшения нарушений.
В заключение отметим резко проявляющееся в полимерных биомолекулах диалектическое единство асимметричного и симметричного, иррегулярного и регулярного строений. В белках естественного происхождения это проявляется, например, в асимметричности и нерегулярности их первичного строения (из-за уникальной линейной последовательности различных L и реже D аминокислот), в симметричности и регулярности их вторичного строения (часто из-за винтового закручивания всей или части полипептид-ной цепи), в резкой асимметричности и нерегулярности их третичного строения (из-за сложения полипеп-тидной цепи — поодиночке или в соединении с другими цепями в причудливые извитые трехмерные структуры, которые мы знаем как белковые молекулы), в столь же резкой симметричности и регулярности их четвертичного строения (из-за укладки идентичных белковых молекул в кристаллические и в квазнкри-сталлические структуры). Аналогично обстоит дело и с нуклеиновыми кислотами. В частности, первичная структура «молекулы жизни»—ДНК асимметрична и нерегулярна из-за уникальной последовательности нуклеотидов, в то время как ее вторичная структура явно симметрична и регулярна из-за винтовой закру-ченности двух ее цепей.
В итоге сравнения неживой и живой природы на молекулярном уровне неминуем эмпирический вывод о резкой диссимметризации, происшедшей при переходе от неживой природы к живой: 1) величина симметрии; 2) число возможных групп сильно уменьшаются; 3) наблюдается четко проявляющееся единство асимметрического и симметрического планов строения в основных «молекулах жизни», превращения типа «симметризация диссимметризация». Отсюда неизбежен вывод о специфическом характере биологической симметрии на молекулярном уровне.
2.3.2.БИОСИММЕТРИЯ СТРУКТУРНАЯ — МОРФОЛОГИЧЕСКАЯ
Несколько иные закономерности наблюдаются при изучении симметрии биосистем на так называемом «морфологическом», или надмолекулярном, уровне. Симметрия органелл, клеток, тканей, органов, растений, животных, различных совокупностей последних изучена далеко не в одинаковой степени. Пожалуй, наиболее достоверные в этом отношении сведения получены лишь зоологами и ботаниками. Поэтому мы в первую очередь рассмотрим именно эти сведения.
В. Н. Беклемишев в двух томах своих классических «Основ сравнительной анатомии» приводит обширный материал по интересующему нас вопросу. Ниже мы рассмотрим его данные, уточняя их по ходу изложения и заменяя словесные описания видов симметрии математическими группами .
Наиболее примитивны среди простейших амебы. В силу неопределенности формы их тела можно говорить лишь о преимущественной их асимметричности — группе (1) (анаксонной), хотя эта их асимметрия может в сущности переходить в любую симметрию, присущую конечным фигурам.
Симметрия следующих по развитию организмов — клеток колониальных радиолярий Соllоzооn, взрослых кокцидий, покоящихся стадий многих других Рrotozoa—шаровая (¥/¥·т). Им присущи все мыслимые элементы симметрии конечных фигур. Эти формы характеризуются лишь одним градиентом свойств — от центра к периферии (у амеб—от глубины к поверхности).
Большинство солнечников (Неliоzоа), множество радиолярий и других Ргоtоzоа относятся к типу n/m • п' где п—конечная, но неопределенная величина (неопределенно-полиаксонные формы).
Заметная диссимметризация произошла с возникновением правильных полиаксонных форм, которые наблюдаются прежде всего среди радиолярий. Замечательно, что число и вид их симметрии соответствуют числу и виду симметрии правильных многогранников:
m·2/3 (тетраэдр), т·4/3 (куб и октаэдр), т • 5/3 (додекаэдр и икосаэдр). При учете и физических свойств («штриховки»)граней многогранников "число "групп возрастает до 7 благодаря 4 дополнительным группам: т: 2/3, 4/3, 2/3, 5/3. Этими же группами описывается симметрия 'и равногранников—изоэдров. Интересно здесь и то, что радиолярии, характеризуемые симметрией додекаэдра и икосаэдра — т • 5/3, обладают и запрещенными для кристаллов пятерными осями. Известно, что среди кристаллов додекаэдры и икосаэдры именно из-за осей (5) невозможны.
Формы с симметрией п: т•2 зоологи называют ставраксонными гомополярными (с перекрывающимися осями, неполярными). Из геометрических фигур такой симметрией обладают, например, цилиндр, бико-нус, эллипсоид, прямые призмы с правильными многоугольниками в основании и т.д. Среди Рrotozoa такая симметрия, точнее, оо : /т•2 присуща, например, раковине корненожки Orbitolites, имеющей форму короткого отрезка цилиндра вроде монеты, многим веретенообразным спорам грегарин, некоторым радиоляриям прежде всего из отряда Spummellaria. Есть и такие организмы, у которых п = 1, 2, 3, 4, 5 . Во многих случаях, например среди ставраксонных радиолярий, удается проследить возникновение форм с определенным конечным /г из форм с неопределенно большим п. Таковы, например, Trigonocyclia симметрии 3 : т • 2, выводимые эволюционио из чечевицеобразных Discoidea с главной осью неопределенно большого порядка.
Все названные фигуры характеризуются одной главной осью порядка п с га пересекающимися в ней вертикальными плоскостями симметрии. Последние пересекает одна горизонтальная плоскость с п параллельными ей осями симметрии второго порядка. У таких фигур есть, таким образом, и центр симметрии. Переход ставраксонно-гомополяриых простейших к сидячему образу жизни или к активному движению в среде привел к исчезновению у них поперечной плоскости симметрии, а вместе с ней и центра симметрии и всех осей второго порядка. Такая диссимметризация привела к смене симметрии га : т • 2 видом п • т, которую зоологи называют монаксонно-гетерополярным, так как оба полюса организма становятся различными. Часто этот вид биологами обозначается и как радиально-симметричный. Это один из распространеннейших видов симметрии жйвой природе Сюда относятся, например, раковины ряда корненожек, споры некоторых грегарин, скелеты множества радиолярий, некоторые Flagellata и т.д. Причем величина п = 1¸¥. Так, раковина корненожки Lagena hispida-(За принадлежит к группе оо. т, радиолярия Medusetta — к 4 • т, споры почти всех Myxosporidia — к 2 • т, наконец, жгутиковые Protomonadina и Роlymastigina, раковины некоторых фораминифер, некоторые радиолярии — к 1 • т =. т, т. е. у них двусторонняя, или билатеральная, симметрия, получающая широчайшее распространение среди многоклеточных. Известно, что в той или иной мере она присуща, например, почти всем хордовым, рыбам, земноводным, млекопитающим.