Проявление симметрии в различных формах материиРефераты >> Естествознание >> Проявление симметрии в различных формах материи
2.3.1.БИОСИММЕТРИЯ СТРУКТУРНАЯ—МОЛЕКУЛЯРНАЯ
Содержание этого вида симметрии мы раскроем постепенно, переходя от нульмерных групп симметрии биомолекул к одно-, дву-, трехмерным. Из всех точечных групп симметрии для «мономерных» молекул наиболее характерны лишь две—п и п•т, при этом обычно п = 1, 2, ., k, где k—величина небольшая. Поэтому наиболее распространенными группами здесь оказываются соответственно (1) и т, 2•т, 3•т . Первая характерна, например, почти для всех оптически активных — асимметрических — мономерных или олиго-сахаров, алкалоидов, многих аминокислот; вторые группы наиболее характерны для всякого рода оптически неактивных, часто запасных веществ. Однако недиссимметрическими группами иногда приходится описывать симметрию, подчас и чрезвычайно метаболически активных веществ (некоторые азотистые основания). Последнее обстоятельство резко ограничивает эмпирическое обобщение Г. Ф. Гаузе об обязательной диссимметричности метаболически активных соединений . Действительная картина здесь, таким образом, оказывается сложнее.
Аминокислоты, пуриновые и пиримиднновые азотистые основания, сахара и т.д., так или иначе химически взаимодействуя, «кристаллизуются» в полимерные, вытянутые в одном направлении цепные молекулы—белки, нуклеиновые кислоты, целлюлозу, крахмал гликоген и другие соединени. Выше мы видели, что цепные молекулы относятся к стержням, поэтому их симметрия должна исчерпываться всего 17 типами, охватывающими бесконечное множество видов симметрии. Однако учет характера взаимодействия между атомами «хребта» и боковых радикалов цепной органической молекулы, тенденций перехода в энергетически наиболее выгодное состояние и других факторов позволяет утверждать, что п природе наиболее часто должны встречаться ценные молекулы, принадлежащие к 13 группам симметрии стержней с N == 1 и к двум типам с винтовой осью «порядка» М — 8м н 5л»/2 .
Учет симметрии возможных конфигураций ковалентных связей главной оси— (2), (3), (3), (4) делает потенциально возможным для отдельных цепных молекул еще 30 групп, что дает всего 45 групп. Число «кристаллографических» групп цепных структур равно, как известно, 75. С возникновением живой природы число наиболее часто встречающихся групп резко уменьшается—до 4. Эти группы—диссимметрнческие: t,t/2, SM/2, где t—ось трансляции (обозначения международные). Например, целлюлоза и "полй-l-аланйн относятся к группе S2, полипептиды в конфигурации α-спирали — к S18/5.
Отдельные цепные молекулы могут давать образования из 2, З . цепочек. Если они связываются водородными связями, то их называют сложными, цепными молекулами; ван-дер-ваальсовыми (по принципу плотной упаковки; в первом случае он не выдерживается) —пучками; если сложная цепная молекула образована из химически различных единиц, то она называется комплексной цепной молекулой.
Сложные и комплексные цепные молекулы, пучки возникают главным образом в биосистемах; они оптически активны, представлены одной энантиоморфой. Поэтому они относятся к диссимметрическим группам стержней: tN, Sм N, tN/2, SMN/2. Однако учет меньшей устойчивости четверных и пятерных (чем двойных и тройных) цепей, спирализации как общего способа последовательной упаковки звеньев цепных молекул делает наиболее вероятным для сложных цепных молекул групп SM2, SM/2, SM3, пучков—Sм, Sм 3, комплексных цепных молекул—Sм2. Так, сложная цепная молекула ДНK относится к группе Sм/2, полиадениловая кислота — к S 2, полиинозиновая — к Sм 3, комплексная цепная молекула вируса табачной мозаики — к S49/3 . Последняя построена из уложенных по одноходовому пологому вунту белковых субъединиц, внутри которых идет цепочка РНК. На каждую субъединицу приходится три нуклеотнда; на три оборота молекулы приходится 49 белковых субъединиц. Другие примеры комплексной ценной молекулы—ДНК-протенды. Здесь полипептидная цепь белка обвивает молекулу ДНК по малой канавке. Так как эта цепочка одиночная, симметрия нуклеопротеи-да — Sм , хотя самой ДНК — Sм /2.
Другой способ объединения цепных молекул приводит к плоским двумерным фигурам — слоям. Причем сами цепные молекулы могут лежать в плоскости слоя или перпендикулярно ему (классический примерпоследних—парафины). Наиболее распространены слои первого рода, которые мы и рассмотрим.
Из 80 групп симметрии слоев для слоев из цепных молекул из-за особенностей их пространственного строения в первом приближении возможными оказываются 42 группы. Ограничения плотной упаковки доводят их число до 19, а наиболее плотную упаковку фигур в слои позволяют всего 4 группы симметрии:
tt'с, tt'1, S2t, З2с. При переходе к биологическим, например мембранным, слоям число групп симметрии с 19 понижается из-за энантиоморфизма до 9: tt', tt'2, 2t, 21t, 2 (21) t, 222, 2122, 21212, 21(2)21 (2) 2 (NВ:S2=21). Классические примеры биологических слоев — складчатые слои полипептидных цепей, предложенные Паулингом и Кори3. Они могут быть параллельные и антипараллельные. Другой их пример — уже отмеченные мембранные слои.
При объединении полимеров в трех взаимно перпендикулярных направлениях пространства возникает ряд различных агрегатов, на одном конце которого идеальные кристаллы, на другом — совершенно аморфные вещества. Для живой природы характерны формы веществ, в той или иной мере отклоняющиеся от идеальных кристаллов и абсолютно аморфных тел.
Здесь, с одной стороны, наблюдается из-за богатства биополимеров Н-связями тенденция к самоагрс-гированию, п как следствие к образованию форм в той или иной мере упорядоченных—лент, складчатых кристаллов, кристаллов из слоев коротких цепных молекул и т.д. Так, хороню изученная кросс-β-конфигурация кератина является лентой из одной полипеп-тидной цепи, построенной по типу антипараллелыюго складчатого слоя. Другой пример. Как известно, в молекулах РНК в зависимости от ионной силы раствора и его температуры меняется число Н-связей, и это как следствие приводит к трем формам их существования: 1) нитям, 2) палочкам (аналогам лент), 3) клубкам.
С другой стороны, из-за больших и разнообразных длин цепных молекул, их гибкости, взаимодействия с соседями, спутывания, скручивания, образования прочных межцепных ковалентных связей между молекулами, например типа дисульфидных связей в каучу-ках, возникновение идеально упорядоченных во всем объеме кристаллов невозможно. Кроме того, такие квазикристаллы в свою очередь часто образуют в различной степени упорядоченные образования—мозаичные монокристаллы, текстуры, поликристаллы и т.д.
Особенности упорядочивания атомов и молекул в нуль-, одно-, дву-, трехмерные биологические образования дали повод Дж. Берналу выступить с идеей обобщенной кристаллографии, характерной прежде всего для живой природы. Она имеет дело уже не с «бесконечно» упорядоченными структурами, а со структурами с частичной упорядоченностью расположения атомов. Характернейшая ее особенность—учение о статистической — средней, наиболее часто встречающейся, вероятной — симметрии, с одной стороны, и нуль-, одно-, дву-, трехмерной «кристаллизации» (упорядоченности) — с другой .