Асимптотические методы исследования нестационарных режимов в сетях случайного доступаРефераты >> Математика >> Асимптотические методы исследования нестационарных режимов в сетях случайного доступа
В новых обозначениях . Тогда система (3.1) примет вид
(3.2)
Получим вид решения системы (3.2), которую будем решать в два этапа.
1 этап. Считая и предполагая, что , будем иметь
(3.3)
.
Выразим через функцию и получим
(3.4)
где - асимптотическая плотность нормированного числа заявок в источнике повторных вызовов.
Обозначим
(3.5)
Заметим, что из системы (3.3) следуют равенства
(3.6)
.
Осталось найти вид функции . Для этого перейдем ко второму этапу.
2 этап. В системе (3.2) разложим функции по приращению аргумента , ограничиваясь слагаемыми порядка , получим систему
(3.7)
Просуммируем полученные уравнения, поделим на и перейдем . Тогда будем иметь
. (3.8)
С учетом того, что
равенство (3.8) принимает вид
. (3.9)
Таким образом мы получили, что удовлетворяет уравнению Фоккера-Планка с коэффициентом переноса равным , и нулевым коэффициентом диффузии. Из определения для коэффициента переноса можно сделать вывод, что , то есть зависит от времени и – имеет смысл асимптотического среднего, в ее окрестности достаточно долго флуктуируют значения нормированного процесса .
Второе приближение
Зная асимптотическое среднее, найдем распределение вероятностей значений отклонения от его среднего. Для этого в исходной системе уравнений (3.1) сделаем замену переменных , , ,.
В новых обозначениях производная равна .
Будем иметь
(3.10)
Решение системы (3.10) аналогично решению системы (3.2), но проводится в три этапа.
1 этап. В системе дифференциальных уравнений (3.10) положим и найдем решение в виде
(3.11)
где – асимптотическое распределение нормированного числа заявок в источнике повторных вызовов в окрестности асимптотического среднего.
Перейдем ко второму этапу.
2 этап. Неизвестные функции будем искать с точностью до форме
(3.12)
где имеют вид аналогичный (3.5), где в качестве выступает и для них справедливы равенства (3.7).
Найдем вид функций .
С точностью до (3.10) запишем
(3.13)
В уравнения (3.13) подставим в форме (3.12), уничтожим подобные слагаемые и получим систему неоднородных линейных алгебраических уравнений относительно функций вида
,
, (3.14)
Система (3.14) будет иметь решение, если . Из уравнения Фоккера-Планка (3.9) мы знаем, что . Таким образом, можно сделать вывод, что система (3.14) разрешима. При условии, что функция известна, решение системы (3.14) можно записать так