Асимптотические методы исследования нестационарных режимов в сетях случайного доступаРефераты >> Математика >> Асимптотические методы исследования нестационарных режимов в сетях случайного доступа
(2.15)
В уравнения (2.15) подставим в форме (2.14), приведем подобные и получим систему неоднородных линейных алгебраических уравнений относительно вида
,
, (2.16)
Нетрудно увидеть, что между уравнениями этой системы есть зависимость и ранг матрицы системы равен, следовательно, чтобы решение уравнений (2.16)существовало, необходимо выполнение равенства
(2.17)
Из однородного линейного уравнения с частными производными первого порядка (2.9) мы знаем, что . Таким образом, можно сделать вывод, что система (2.16) разрешима. При условии, что функция известна, решение можно записать в виде
,
(2.18)
Теперь все готово, для того, чтобы найти функцию . Перейдем к третьему этапу.
3 этап. В системе дифференциальных уравнений (2.11) все функции с аргументом разложим в ряд по приращению аргумента , ограничиваясь слагаемыми порядка , получим
(2.19)
Теперь подставим в уравнения (2.19) в форме (2.14) и просуммируем левые и правые части уравнений, будем иметь
(2.20)
Подставляя вместо и их выражения, полученные на втором этапе получим для уравнение Фоккера-Планка
, (2.21)
где
Нормированным решением полученного одномерного уравнения диффузии [8] является плотность нормального распределения вероятностей с нулевым средним и дисперсией
. (2.22)
3. Исследование нестационарной сети случайного доступа со статическим протоколом в условиях большой задержки
Исследуем сеть связи, функционирование которой изложено в разделе 1, в условиях большой задержки. В этом случае удобнее рассматривать случай, когда интенсивность каждой заявки в ИПВ равна . Структура такой СМО имеет вид рис. 3.1.
Рис. 3.1 – Модель системы массового обслуживания
Вероятности переходов из состояния системы в произвольный момент времени t в состояние за бесконечно малый интервал времени показаны на рис. 3.2, рис. 3.3, рис. 3.4.
Выпишем уравнения статистического равновесия для нестационарного распределения процесса , описывающего функционирование сети
(3.1)
где
Рис. 3.2 – Возможные переходы из состояния
Рис. 3.3 – Возможные переходы из состояния
Рис. 3.4 – Возможные переходы из состояния
Найти точное аналитическое решение системы (3.1) практически невозможно, но можно решить асимптотически в условиях большой задержки, то есть при .
Первое приближение
Для асимптотического решения системы (3.1) сделаем замену переменных . В результате замены производится переход от дискретной переменной к непрерывной переменной .