Асимптотические методы исследования нестационарных режимов в сетях случайного доступа
Рефераты >> Математика >> Асимптотические методы исследования нестационарных режимов в сетях случайного доступа

Рис. 4.4: Рис. 4.5:

Таблица 2. Вероятностно-временные характеристики

Хар-ки

Метод

Метод

Точный

Асимптотический

Точный

Асимптотический

22,69

23,87

55,2

56,3

0,608

0,6

0,703

0,7

3,182

3,28

5,233

5,34

0,119

0,13

0,411

0,43

0,191

0,183

0,134

0,131

0,3

0,304

0,186

0,187

Рис. 4.6:

Таблица 3. Вероятностно- временные характеристики для сети связи с параметрами

Хар-ки

Метод

Точный

Асимптотический

124,05

125,28

0,603

0,6

2,889

2,92

0,594

0,61

0,209

0,205

0,341

0,342

Таким образом, используя полученную информацию об исследовании системы, мы можем управлять ее функционированием, добиваясь нужных нам характеристик путем изменения параметров, влияющих на состояние системы.

Численное исследование позволило установить следующее: в системе, построенной на основе протокола с оповещением о конфликте для конечного числа АС можно пренебречь различием предельной и допредельной моделей.

Заключение

В данной работе проведено исследование функционирования нестационарных сетей связи случайного доступа с оповещением о конфликте для конечного и бесконечного числа абонентских станций. Рассмотрен динамический и статический протокол случайного множественного доступа.

В первом разделе проведено исследование нестационарной сети случайного доступа с динамическим протоколом в условиях большой загрузки. Определена точная верхняя граница загрузки сети, при которой существует стационарный режим. Исследование показало, что плотность распределения нормированного числа заявок в источнике повторных вызовов удовлетворяет уравнению Фоккера-Планка с постоянными коэффициентами. Предложен метод его решения с помощью преобразования Лапласа.

Во втором разделе проведено исследование неоднородной нестационарной сети случайного доступа с динамическим протоколом в условиях перегрузки. В первом приближении получено асимптотическое среднее, во втором распределение отклонения в окрестности асимптотического среднего, которое удовлетворяет уравнению Фоккера-Планка с нулевым коэффициентом переноса и является нормальным.

В третьем разделе проведено исследование нестационарной сети случайного доступа со статическим протоколом в условиях большой задержки. В первом приближении получено асимптотическое среднее, во втором распределение отклонения в окрестности асимптотического среднего, которое удовлетворяет уравнению Фоккера-Планка и является нормальным. Рассмотрены точки покоя.

В четвертом разделе исследовано функционирование сети случайного множественного доступа с динамическим протоколом для конечного числа абонентских станций. В п. 4.1. изложены два этапа асимптотического анализа. На первом этапе удалось определить асимптотическую «предельную» точку, в окрестности которой «концентрируется» искомая плотность распределения вероятности, а на втором этапе – нашли распределение отклонения в окрестности «предельной» точки. На этом этапе получено асимптотически нормальное распределение, что является аналогом известных в теории вероятностей законов больших чисел и центральных предельных теорем. Особенностью рассматриваемой СМО, является то, что алгебраические уравнения, описывающие ее функционирование, имеют точное численное решение, которое изложено в п. 4.2. Поэтому в п. 4.3. проводится аналогия между численным и асимптотическим решением и определяется область применимости асимптотических формул.


Страница: