Асимптотические методы исследования нестационарных режимов в сетях случайного доступаРефераты >> Математика >> Асимптотические методы исследования нестационарных режимов в сетях случайного доступа
Рис. 4.4: Рис. 4.5:
Таблица 2. Вероятностно-временные характеристики
Хар-ки |
|
| ||
Метод | Метод | |||
Точный | Асимптотический | Точный | Асимптотический | |
| 22,69 | 23,87 | 55,2 | 56,3 |
| 0,608 | 0,6 | 0,703 | 0,7 |
| 3,182 | 3,28 | 5,233 | 5,34 |
| 0,119 | 0,13 | 0,411 | 0,43 |
| 0,191 | 0,183 | 0,134 | 0,131 |
| 0,3 | 0,304 | 0,186 | 0,187 |
Рис. 4.6:
Таблица 3. Вероятностно- временные характеристики для сети связи с параметрами
Хар-ки | Метод | |
Точный | Асимптотический | |
| 124,05 | 125,28 |
| 0,603 | 0,6 |
| 2,889 | 2,92 |
| 0,594 | 0,61 |
| 0,209 | 0,205 |
| 0,341 | 0,342 |
Таким образом, используя полученную информацию об исследовании системы, мы можем управлять ее функционированием, добиваясь нужных нам характеристик путем изменения параметров, влияющих на состояние системы.
Численное исследование позволило установить следующее: в системе, построенной на основе протокола с оповещением о конфликте для конечного числа АС можно пренебречь различием предельной и допредельной моделей.
Заключение
В данной работе проведено исследование функционирования нестационарных сетей связи случайного доступа с оповещением о конфликте для конечного и бесконечного числа абонентских станций. Рассмотрен динамический и статический протокол случайного множественного доступа.
В первом разделе проведено исследование нестационарной сети случайного доступа с динамическим протоколом в условиях большой загрузки. Определена точная верхняя граница загрузки сети, при которой существует стационарный режим. Исследование показало, что плотность распределения нормированного числа заявок в источнике повторных вызовов удовлетворяет уравнению Фоккера-Планка с постоянными коэффициентами. Предложен метод его решения с помощью преобразования Лапласа.
Во втором разделе проведено исследование неоднородной нестационарной сети случайного доступа с динамическим протоколом в условиях перегрузки. В первом приближении получено асимптотическое среднее, во втором распределение отклонения в окрестности асимптотического среднего, которое удовлетворяет уравнению Фоккера-Планка с нулевым коэффициентом переноса и является нормальным.
В третьем разделе проведено исследование нестационарной сети случайного доступа со статическим протоколом в условиях большой задержки. В первом приближении получено асимптотическое среднее, во втором распределение отклонения в окрестности асимптотического среднего, которое удовлетворяет уравнению Фоккера-Планка и является нормальным. Рассмотрены точки покоя.
В четвертом разделе исследовано функционирование сети случайного множественного доступа с динамическим протоколом для конечного числа абонентских станций. В п. 4.1. изложены два этапа асимптотического анализа. На первом этапе удалось определить асимптотическую «предельную» точку, в окрестности которой «концентрируется» искомая плотность распределения вероятности, а на втором этапе – нашли распределение отклонения в окрестности «предельной» точки. На этом этапе получено асимптотически нормальное распределение, что является аналогом известных в теории вероятностей законов больших чисел и центральных предельных теорем. Особенностью рассматриваемой СМО, является то, что алгебраические уравнения, описывающие ее функционирование, имеют точное численное решение, которое изложено в п. 4.2. Поэтому в п. 4.3. проводится аналогия между численным и асимптотическим решением и определяется область применимости асимптотических формул.