Аксиоматика векторного пространства
Рефераты >> Математика >> Аксиоматика векторного пространства

Глава 1

§1. Аксиоматика векторного пространства

Характеризация векторного пространства, как математической структуры осуществляются рядом аксиом.

Основные понятия теории: "вектор", "сумма двух векторов", "произведение вектора на действительное число".

Косвенным определением основных понятий теории векторного пространства являются следующие аксиомы:

I. Для любых векторов и существует единственный третий вектор , называемый их суммой

Таким образом аксиома I постулирует:

а) единственность этой суммы.

б) существование суммы двух векторов и ;

Данная аксиома вводит на множестве векторов V операцию

f1: V x V ® V.

которая называется сложением двух векторов.

II. Сложение векторов коммутативно, т.е.

.

III. Сложение векторов ассоциативно, т.е.

IV. Существует вектор такой, что для любого вектора, т.е.

Определение 1.1. Вектор , удовлетворяющий аксиоме IV, называется нулевым вектором и обозначается

V. Для каждого вектора существует такой вектор , что +=

Определение 1.2. Вектор , удовлетворяющий аксиоме V, называется противоположным вектору .

VI. Для любого вектора и действительно числа , существует единственный вектор , называемый произведением вектора на число и обозначаемый т.о.: , т.е.

, ,

Данная аксиома вводит операция нового типа (внешнюю операцию):

Эта операция носит название «умножение вектора на число».

VII. Для любого вектора умножение вектора на 1 не изменяет вектора , т.е.

,

VIII. Умножение вектора на число ассоциативно, т.е.

, ,

IX. Умножение вектора на число дистрибутивно сложения чисел, т.е.

, ,

X. Умножение вектора на число дистрибутивно относительно сложения векторов, т.е.

, ,

Этим заканчивается аксиоматика векторного пространства, которое можно теперь определить т.о.:

множество V с введенными двумя операциями

,

подчиняющееся аксиомам I-X, называется векторным пространством над полем действительных чисел R.

§2. Следствие из аксиом векторного пространства

Из аксиом I-X можно вывести целый ряд предложений.

Теорема 2.1. Существует единственный нулевой вектор.

Доказательство:

Предложим, что существует два различных вектора и таких, что и для любого вектора .

Положим . Тогда

*и (1)

Положим теперь . Аналогично получим:

и (2)

Так как (по аксиоме II), то из (1) и (2) следует, что .

Таким образом, векторное пространство содержит единственный вектор , удовлетворяющий равенству .


Страница: