Уникальный астрономический объект SS 433
Рефераты >> Астрономия >> Уникальный астрономический объект SS 433

Во всех низкоскоростных (W < 1) вариантах наблюдалось формирование устойчивого аккреционного диска. Напротив, при высоких граничных значениях скорости (W > 1) диск образовывался квазипериодически, лишь в определенные моменты времени, причем при следующем возникновении диска направление движения газа в нем изменялось на противоположное. Оказалось также, что увеличение скорости ветра приводит к существенному уменьшению скорости аккреции, выраженной в долях от темпа истечения вещества от первичного компонента.

Решение задачи о газодинамике массопереноса во взаимодействующих двойных системах все еще далеко от завершения, поскольку многообразие протекающих в системе процессов и сложность их численного моделирования пока не позволяют разработать единую модель, детально описывающую все рассматриваемые системы. [3]

2.4. Эволюция одиночной звезды

Самое долгое время своей жизни звезда проводит на стадии, определяемой процессами термоядерного горения водорода в ее недрах. Время пребывания на главной последовательности диаграммы Герцшпрунга – Рессела очень сильно зависит от массы звезды: чем она массивнее, тем горячее ее центральные части, но тем скорее израсходуется водородное топливо в ядре звезды. Так, звезды с массой порядка солнечной находятся на главной последовательности несколько миллиардов лет. После того, как водород кончается в ядре, он начинает гореть в узком слое. При этом одиночная звезда становится очень больших размеров (100–1000 ), переходя в класс красных сверхгигантов. Звезды с массой меньше 0,8 ,

вообще не успевают проэволюционировать от стадии главной последовательности за космологическое время (10–13 млрд. лет). [1]

Век массивных звезд сравнительно короток по космологическим меркам: звезда с массой больше 10 на главной последовательности пребывает не дольше 10 млн. лет. После полного исчерпания водорода загорается накопившийся в недрах гелий, потом углерод и далее во все убыстряющемся темпе более тяжелые элементы.

При этом продукты горения каждой предыдущей реакции становятся топливом для последующей: водород ® гелий ® углерод ® .® железо. В некоторый критический момент, когда в недрах звезды накопится достаточно тяжелых элементов, она теряет свою устойчивость и ее ядро коллапсирует под действием сил гравитации. В процессе коллапса высвобождается гигантская энергия (~1052 эрг) – происходит грандиозная вспышка сверхновой.

В среднем в нашей Галактике одна сверхновая вспыхивает примерно раз в несколько сотен лет. На месте сверхновой может остаться компактный объект – нейтронная звезда или черная дыра. Массы нейтронных звезд не превосходят 3, а их радиусы – около 10 км. Черные дыры могут иметь любые звездные массы.

Если начальная масса звезды меньше 10, то эволюция протекает иначе. На стадии красного гиганта у нее формируется вырожденное гелиевое или углеродно-кислородное ядро, которое после сброса внешней оболочки (при этом образуется планетарная туманность) превращается в белый карлик – звезду, где гравитационным силам сжатия противостоит давление вырожденного электронного газа.

2.5. Особенности эволюции звезд в паре

Эволюцию двойных систем принято делить на два типа: эволюцию массивных систем, в которых хотя бы одна из компонент имеет массу ³10, и эволюцию систем малых и умеренных масс. У систем первого типа закономерным следствием эволюции является вспышка сверхновой звезды, у вторых – вспышка сверхновой возможна лишь при очень специфических условиях: когда на белый карлик, образовавшийся в ходе обычной эволюции одной из компонент, «натекает» вещество со второй звезды. Белый карлик наращивает свою массу вплоть до того момента, когда уже вырожденный релятивистский электронный газ не в состоянии противостоять гравитационному сжатию. Этот фундаментальный предел массы (1,4) был открыт в 30-х годах нашего века С. Чандрасекаром и носит его имя. [15]

Рассмотрим, как меняется орбита системы в процессе обмена веществом. Во многих случаях обмен масс в двойной системе с большой точностью можно считать консервативным, то есть все вещество, истекающее с одной звезды, полностью перехватывается соседней и орбитальный момент системы не изменяется. Из условия сохранения момента следует, что при перетекании вещества с более массивной компоненты на менее массивную расстояние между звездами должно уменьшаться. В противном случае – когда вещество истекает с менее массивной компоненты – расстояние между ними должно увеличиваться.

По ряду причин вещество может не полностью перехватываться соседней компонентой и часть его покидает систему, унося угловой момент. Тогда процесс перетекания неконсервативен, угловой момент не сохраняется, В этом случае расчет эволюции усложняется. По общей теории относительности (ОТО) орбитальный момент импульса двойной системы должен всегда убывать, вне зависимости от того, происходит в системе перетекание вещества или нет.

Глава 3. Уникальный объект SS 433

3.1. Загадка SS 433

Об этом удивительном небесном объекте написано уже немало. Речь идет об источнике в созвездии Орла, занесенном в каталог ярких эмиссионных звезд Ц. Стефенсона и Н. Сандулека под номером 433. SS 433 – уникальная по своим свойствам тесная двойная система: несмотря на тщательные поиски, других подобных источников пока в Галактике не обнаружено. Источник удивителен по богатству ярких феноменов, физика которых во многом до настоящего времени окончательно не выяснена. [9]

Внимание к себе он привлек после того, как английскими учеными Д. Кларком и П. Мардиным была получена первая спектрограмма с высоким разрешением в оптическом диапазоне. В 1977 г. Б. Стефенсон и Н. Сандулек опубликовали список звезд, замечательных тем, что в их спектрах имелись яркие эмиссионные линии. Дальнейшее изучение показало, что одна из этих звезд невидимая простым глазом звезда под номером SS 433 в районе созвездия Орла вблизи центральной плоскости Галактики, выделяется необычайным обилием эмиссионных линий. В ее спектре имеются яркие эмиссионные линии водорода, гелия, некоторых других элементов. Но около каждой из этих линий находится по две дополнительные эмиссионные линии несколько меньшей интенсивности – одна слева, а другая справа.


Страница: