Уникальный астрономический объект SS 433Рефераты >> Астрономия >> Уникальный астрономический объект SS 433
3.4. Черная дыра или нейтронная звезда?
Одним из нерешенных вопросов на данный момент остается вопрос о природе компактного объекта в SS 433. Соблазнительно видеть в нем кандидата в черные дыры, однако сколь нибудь надежных доказательств этому пока нет. Что же мы знаем о компактной звезде в SS 433? По кривой лучевых скоростей можно определить функцию масс двойной звездной системы. Значение полуамплитуды лучевых скоростей, полученные по линии ионизованного гелия Hell (l-4686 А), имеют большой разброс – от К=195 км/с до К=150 км/с. При этом разброс в функции масс оказывается еще больше: от f = 10,6 до f = 4,8. Предполагается, что эта «линия формируется непосредственно вблизи компактного объекта и тем самым ее лучевая скорость совпадает с лучевой скоростью объекта. Чтобы получить оценку массы этого тела, надо найти отношение масс в системе.
Сейчас представляется, что существенная доля оптического излучения выходит из «всплывающих облаков», когда они становятся оптически прозрачными. До этого момента оптическое излучение было как бы «заперто» в оптически непрозрачных облаках. Другими словами, два эффекта – увеличение площади расширяющихся облаков и уменьшение их оптической толщины – дают дополнительный свет из области с размерами больше полости Роша компактного объекта. При моделировании оптических кривых блеска учет этих эффектов позволяет уменьшить относительный размер полости Роша компактной звезды (а следовательно, отношение масс в системе). [3, 17].
3.5. Прецессия джетов
Остается понять причину 164-дневной прецессии джетов. Поскольку в любой модели их коллимация осуществляется некоторой воронкой вещества вокруг центрального тела, прецессировать должна и эта воронка, а, значит, по крайней мере внутренние части аккреционного диска. Если центральный источник – вращающаяся черная дыра, ее прецессия автоматически гарантирует прецессию внутренних частей аккреционного диска. Однако характерные времена этой прецессии невероятно велики. Если же в центре находится нейтронная звезда без сильного магнитного поля, то требуется прецессия всего аккреционного диска. Поскольку мы имеем дело с двойной системой, в которой относительно недавно произошел взрыв одной из компонент как сверхновой, вероятна несоосность оси вращения нормальной звезды, и орбитального углового момента. Во время вспышки сверхновой плоскость орбиты может изменить ориентацию в пространстве, в то время как угловой момент нормальной звезды свою ориентацию в пространстве сохраняет; разумеется, через некоторое время из-за приливного взаимодействия моменты вращения должны стать соосными. В такой ситуации может возникнуть приливная прецессия нормальной компоненты, вследствие чего весь диск также будет прецессировать. К образованию наклонного аккреционного диска может также привести анизотропный прогрев оптической звезды рентгеновским излучением – подобно тому, как это происходит в двойной рентгеновской системе Геркулес Х-1 [21]
Итак, что же представляет собой SS 433? Прежде всего, это сверхкритическая дисковая аккреция на компактный объект (скорее всего, на нейтронную звезду). В режиме сверхкритической дисковой аккреции возникает квазисферическая оттекающая структура с двумя каналами вдоль оси симметрии, перпендикулярными плоскости диска. Дополнительное энерговыделение вблизи поверхности нейтронной звезды создает градиент давления, под действием которого вещество выталкивается вдоль этих каналов. Эта картина в целом напоминает два симметрично расположенных действующих вулкана и выделяемой энергии достаточно, чтобы придать веществу скорость, равную второй космической для нейтронной звезды солнечной массы.
Глава 4. Оценка амплитуды эффекта отражения для рентгеновской звезды звездной системы Her X-1.
В звездных системах часто наблюдается «эффект отражения» одного компонента от другого. Вследствие движения компонентов двойной системы этот эффект обладает периодичностью.
Оценим амплитуду эффекта отражения, если известна светимость компактной звезды , светимость нормальной звезды , большая полуось двойной системы а и радиус нормальной звезды .
Пусть -рентгеновская светимость релятивисткой компоненты. На единицу площади поверхности сферы радиуса а каждую секунду от релятивистского объекта приходит энергия
(4.1)
Площадь диска нормальной звезды .
Тогда каждую секунду на поверхность нормальной звезды площадью S приходит от релятивистского объекта энергия: