Уникальный астрономический объект SS 433Рефераты >> Астрономия >> Уникальный астрономический объект SS 433
Таким образом, будем ли мы для вычисления масс пользоваться формулами или более простыми формулами в обоих случаях, кроме элементов орбиты и Т, необходимо знать также и параллакс звезды p.
В качестве примера рассмотрим двойную звезду Сириус, для которой отношение масс компонентов оказалось приблизительно равным 2,5. Элементы Т и истинной орбиты спутника относительно главной звезды и параллакс оказались: Т= 50,0 лет, = 7",57 и p = 0",375.
Подставляя эти величины в формулы, находим: = 20,1 и 3,2, а так как : = 2,5, то = 2,3 и = 0,9, т. е. масса спутника немногим меньше массы Солнца. Известно, что спутник Сириуса является белым карликом. [16]
1.2. Спектрально – двойные звезды
Звезды, двойственность которых устанавливается лишь на основании спектральных наблюдений, называются спектрально – двойными.
Характер и причина изменения спектров спектрально-двойных звезд объясняются рис. 2. Если очень близкие компоненты двойной звезды, движущиеся вокруг общего центра масс, мало отличаются друг от друга по спектру и по блеску, то в спектре такой звезды должно наблюдаться периодически повторяющееся раздвоение спектральных линий.
Если один компонент занимает положение А1, а другой – положение В1, то оба они будут двигаться под прямым углом к лучу зрения, направленному к наблюдателю, и раздвоения спектральных линии не получится. Но если компоненты занимают положение А2 и В2, то компонент А движется к наблюдателю, а компонент В – от наблюдателя и раздвоение спектральных линий наблюдаться будет, так как у первого компонента спектральные линии сместятся к фиолетовому концу спектра, а у второго – к красному концу. Затем при дальнейшем движении компонентов раздвоение спектральных линий постепенно исчезнет (оба компонента будут опять двигаться под прямым углом к лучу зрения) и снова повторится, когда компонент А будет двигаться от наблюдателя, а компонент В – к наблюдателю. Таким образом, спектральные линии компонентов А и В будут колебаться около некоторых средних своих положений, при которых они будут совпадать и которые соответствуют лучевой скорости центра масс системы.
Для определения элементов орбиты какой-либо спектрально-двойной звезды необходимо иметь достаточно большое количество спектрограмм этой звезды, дающих возможность построить так называемую кривую лучевых скоростей. При построении этой кривой по оси абсцисс откладывается время, а по оси ординат – лучевые скорости. Форма кривой лучевых скоростей зависит только от двух элементов – эксцентриситета е и угла w, определяющего положение периастра. Характерные образцы кривых лучевых скоростей для некоторых частных значений е и w изображены на рисунке 3. Положение горизонтальной прямой у всех кривых этого рисунка соответствует лучевой скорости, которую компоненты имеют при своем движении под прямым углом к лучу зрения (т.е., иными словами, лучевой скорости центра масс системы).
Независимо от применяемого способа из числа элементов орбит спектрально-двойных звезд могут быть определены только w, , Т и t. Совершенно нельзя определить позиционный угол и нельзя определить в отдельности наклонение i плоскости орбиты и большую полуось а, так как одни и те же лучевые скорости могут получиться при движении звезды по орбитам с различными наклонениями и соответственно различными большими полуосями. [2, 4, 23]
1.3. Затменно–двойные звезды
Затменными переменными называются неразрешимые в телескопы тесные пары звезд, видимая звездная величина которых меняется вследствие периодически наступающих для земного наблюдателя затмений одного компонента системы другим. В этом случае звезда с большей светимостью называется главной, а с меньшей – спутником. Типичными примерами звезд этого типа являются звезды Алголь (b Персея) и b Лиры. Вследствие регулярно происходящих затмений главной звезды спутником, а также спутника главной звездой суммарная видимая звездная величина затменных переменных звезд меняется периодически.
Разность звездных величин в минимуме и максимуме называется амплитудой, а промежуток времени между двумя последовательными максимумами или минимумами – периодом переменности. У Алголя, например, период переменности равен 2d20h49m, а у b Лиры– 12d21h48m.
По характеру кривой блеска затменной переменной звезды можно найти элементы орбиты одной звезды относительно другой, относительные размеры компонентов, а в некоторых случаях даже получить представление об их форме. На рис. 4 показаны кривые блеска некоторых затменных переменных звезд вместе с полученными на их основании схемами движения компонентов. На всех кривых заметны два минимума: глубокий (главный, соответствующий затмению главной звезды спутником), и слабый (вторичный), возникающий, когда главная звезда затмевает спутник.
1. Характер затмений (частное, полное или центральное) определяется наклонением i и размерами звезд. Когда i = 90°, затмение центральное, как у b Лиры (рис. 5). В тех случаях, когда диск одной звезды полностью перекрывается диском другой, соответствующие области кривой блеска имеют характерные плоские участки (как у IH Кассиопеи), что говорит о постоянстве общего потока излучения системы в течение некоторого времени, пока меньшая звезда проходит перед или за диском большей. В случае только частных затмений минимумы острые (как у RX