Анализ сигналов и их прохождения через электрические цепи
Рефераты >> Радиоэлектроника >> Анализ сигналов и их прохождения через электрические цепи

Рисунок 3.2.1 – Схема цепи

3.3 Апериодическое звено

R1

Схема апериодического звена изображена на рисунке 3.3.1.

Рисунок 3.3.1 - Схема апериодического звена

Параметры цепи

С=0.5мкФ, RC=T, R1=103R, T=3.5×10-5сек.

Найдём R и R1:

(3.3.1)

. (3.3.2)

Комплексный частотный коэффициент передачи цепи определяется по формуле (3.3.3), как отношение выходного комплексного сопротивления к входному

. (3.3.3)

Комплексный частотный коэффициент передачи апериодического звена

Найдем комплексный частотный коэффициент передачи апериодического звена:

(3.3.4)

Из формулы (3.3.4) найдём АЧХ:

(3.3.5)

Из формулы (3.3.5) найдём ФЧХ:

. (3.3.6)

Амплитудно-частотная и фазо-частотная характеристики апериодического звена показаны в приложении Б на рисунках Б.1 и Б.2 соответственно.

Операторный коэффициент передачи получаем из комплексного частотного коэффициента путём замены jw на р.

(3.3.7)

Импульсная характеристика h(t) это реакция цепи на дельта-импульс d(t). Удобнее всего искать ее в операторной форме.

Изображение d(t) в операторной форме имеет вид, приведённый в формуле (3.3.8).

(3.3.8)

d(t) ® 1

Импульсную характеристику цепи найдём через обратное преобразование Лапласа, результат которого приведён в формуле (3.3.9).

(3.3.9)

Графическое изображение импульсной характеристики апериодического звена приведено в приложении Б на рисунке Б.3

Переходная характеристика g(t) представляет собой реакцию цепи на единичную ступеньку s(t). Изображение s(t) в операторной форме имеет вид:

(3.3.10)

Сигнал на выходе в операторной форме, когда на входе единичная ступенька s(t) имеет вид:

(3.3.11)

В итоге, переходная характеристика приведена в формуле (3.3.12).

(3.3.12)

Графическое изображение переходной характеристики апериодического звена приведено в приложении Б на рисунке Б.4

3.4 Колебательное звено.

Схема колебательного звена приведена на рисунке 3.4.1

Рисунок 3.4.1 – Схема электрическая принципиальная колебательного контура

Параметры цепи

L=1.5мкГн=1.5×10-6Гн, C=20000пФ=2×10-8Ф,

Q=50, R1=103R, fр=f0

Найдём R и R1. Для этого преобразуем параллельное соединение C и R1 в последовательное соединение Сэкв и Rэкв.

Допустим R1>>Rc, где R1 – сопротивление резистора R1, Rc – реактивное сопротивление конденсатора, тогда Сэкв»С.

Эквивалентная схема приведена на рисунке 3.4.2

Рисунок 3.4.2 – Эквивалентная схема колебательного звена

Резонансная частота последовательного колебательного контура определяется формулой:

. (3.4.1)

. (3.4.2)

Характеристическое сопротивление контура – сопротивление каждого из реактивных элементов при резонансе:

. (3.4.3)

. (3.4.4)

Переходя к эквивалентной схеме определяют Rэкв по формуле:

. (3.4.5)

Rпос=R+Rэк . (3.4.6)

Подставив все значения в формулу (3.4.4):

Ом. (3.4.7)

Подставляем (3.4.5) в (3.4.4) и учитывая, что R1=103×R, получаем:

, (3.4.8)

. (3.4.9)

R=0.087Ом. Следовательно, R1=870 Ом.

870 Ом >> 8.66 Ом (3.4.10)

Комплексный частотный коэффициент передачи цепи определяется по аналогии с апериодическим звеном по формуле (3.3.3).

(3.4.11)

коэффициент передачи колебательного звена.

(5.8)

Для АЧХ имеем:

. (5.9)

Для ФЧХ имеем:

. (5.10)

Амплитудно-частотная и фазо-частотная характеристики колебательного звена показаны на рисунках в приложении В на рисунках В.1 и В.2

Операторный коэффициент передачи получаем путём замены iw на р по аналогии с апериодическим звеном.

Передаточная функция колебательного звена имеет вид:

, (5.18)


Страница: