Анализ сигналов и их прохождения через электрические цепиРефераты >> Радиоэлектроника >> Анализ сигналов и их прохождения через электрические цепи
Графики спектральной плотности для заданного видеосигнала изображён в приложении А на рисунке А.2
2.2 Математические модели сигналов, соответствующих заданному видео сигналу, и их спектры
2.2.1 Периодическая последовательность видеосигналов
Математическая модель периодической последовательности видеосигналов, изображенная в приложении А на рисунке А.3, вычисляется по формуле (2.2.1.1)
|
где Sp(t) - математическая модель периодической последовательности видеосигналов;
s(t) – математическая модель видеосигнала;
- период повторения видеосигналов.
График периодической последовательности видеосигналов изображён в приложении А на рисунке А.3
Спектр периодической последовательности видеосигналов вычисляется по формуле (2.2.1.2)
|
|
где ;
.
График спектральной плотности периодической последовательности видеосигналов изображён в приложении А на рисунке А.4
2.2.2. Радиосигнал с огибающей в форме видеосигнала.
Выражение для радиосигнала с огибающей в форме видеосигнала представлено в формуле (2.2.2.1).
|
- начальная фаза колебания;
- частота колебания.
Частота радиосигнала совпадает с резонансной частотой колебательного звена, которая определяется по формуле (2.2.2.2).
|
Значения L и С в формуле (2.2.2.2) берутся из задания на курсовую работу. В итоге имеем рад*МГц.
Графическое изображение радиосигнала приведено в приложении А на рисунке А.5
Спектральная плотность радиосигнала определяется по формуле (2.2.2.3)
|
График модуля спектральной плотности радиосигнала приведён в приложении А на рисунке А.6
2.2.3. Аналитический сигнал, соответствующий радиосигналу.
Аналитический сигнал Z(t), соответствующий реальному физическому сигналу s(t), определяется по формуле (2.2.3.1).
|
|
где - функция, сопряжённая по Гильберту исходному сигналу s(t).
Если исходный сигнал записан в форме
|
то сопряженная функция будет такой:
Аргумент синуса определяется по формуле (2.2.3.4).
|
где - частота несущего высокочастотного колебания;
- изменяющаяся во времени фаза;
- постоянная во времени начальная фаза.
Примем =0 и =0, поэтому .
Исходя из всего вышесказанного, аналитический сигнал можно записать в виде, представленном формулой (2.2.3.5).
|
|