Анализ сигналов и их прохождения через электрические цепиРефераты >> Радиоэлектроника >> Анализ сигналов и их прохождения через электрические цепи
СОДЕРЖАНИЕ
1 Задание на курсовую работу 3
1.1 Цель работы 3
1.2 Заданные параметры 3
2 Анализ формы сигнала 4
2.1 Математическая модель видеосигнала и его спектр 4
2.2 Математические модели сигналов, соответствующих заданному видео сигналу, и их спектры 6
2.1.1 Периодическая последовательность видеосигналов 6
2.2.2 Радиосигнал с огибающей в форме видеосигнала 8
2.2.3 Аналитический сигнал, соответствующий радиосигналу 9
2.2.4 Дискретный сигнал 10
2.3. Вывод 12
3 Анализ электрических цепей 13
3.1 Апериодическое звено 14
3.2 Колебательное звено 16
4 Анализ прохождения сигналов через цепи 19
4.1 Прохождение видеосигнала через апериодическое
и колебательное звено 19
4.2 Прохождение радиосигнала через апериодическое
и колебательное звено 20
5 Анализ прохождения случайного сигнала через линейные цепи 21
5.1 Анализ прохождения случайного сигнала через
апериодическое звено 21
5.2 Анализ прохождения случайного сигнала через
колебательное звено 22
6 Заключение 24
7 Список литературы 25
1 ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ
R - сопротивление
C - ёмкость
L - индуктивность
А - амплитуда сигнала
Q - добротность колебательного контура
s(t) - функция Хевисайда, которая определяется как:
(1.1)
t - время
w - круговая частота
АЧХ - амплитудно-частотная характеристика
ФЧХ - фазо-частотная характеристика
g(t) - переходная характеристика цепи
h(t) - импульсная характеристика цепи
K(jw) - комплексный частотный коэффициент передачи цепи
K(p) - операторный коэффициент передачи цепи
2 ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ
Студенту группы 9341 Прокопьева К.В.
Учебная дисциплина “Радиотехнические цепи и сигналы”
2.1 Тема работы
Анализ радиотехнических сигналов и их прохождение через линейные цепи.
2.2 Цель работы
Анализ радиотехнических сигналов и линейных цепей методами математического моделирования .
2.3 Исходные данные
2.3.1 Видеосигнал – полином Чебышева третьей степени, определенный на интервале времени (-T,T), где T=35 мкс.
2.3.2 Схема апериодического звена:
Г-образный четырехполюсник, где
Z1 - C параллельно R1,
Z2 - R.
RC=T, С=0.5 мкФ, R1=103R.
2.3.2 Схема колебательного звена:
Г-образный четырехполюсник, где
Z1 - L последовательно C параллельно R1,
Z2 - R.
С=20000 пФ, L=1.5 мкГн, R1=104R.
Добротность колебательной системы равна 50, резонансная частота контура совпадает с частотой радиоимпульса.
2.4 Условия
Дополнительные условия отсутствуют.
2.5 Срок выдачи задания курсовую работу
_
2.6 Срок выполнения курсовой работы
_
Задание выдал Задание получил
2 АНАЛИЗ ФОРМЫ СИГНАЛА
2.1 Математическая модель видеосигнала и его спектр
Выражение для определения полиномов Чебышева (третьего рода) и полином Чебышева третьего порядка представлены формулами (2.1.1) и (2.1.2) соответственно.
|
|
T3(x) = (4*x3-3*x)
Математическая модель видеосигнала представляет собой промасштабированный полином Чебышева третьего порядка. Масштабирование осуществляется путем замены переменной x на новую переменную kt. Коэффициент k выбирается так, чтобы выполнялось условие kt=1 при t=T и kt=-1 при t=-T (так как функция Чебышева ортогональна при -1<x<1). Параметр Т задан и , значит k=1/T.
После масштабирования полином Чебышева примет вид, представленный в формуле (2.1.3).
|
T3(x) = 4*(t/T)3-3*(t/T)
Математическая модель видеосигнала будет описываться функцией, представленной в формуле (2.1.4) на промежутке tÎ[-T, T]. Окончательная модель видеосигнала имеет вид:
|
Так как большинство расчётов будет производиться преимущественно численными методами с помощью специализированного программного обеспечения, то математическую модель видеосигнала можно записать с помощью единичной функции. Это приведено в формуле (2.1.5).
|
Графическое изображение модели видеосигнала приведено в приложении А на рисунке А.1
Спектральную плотность видеосигнала находится с помощью прямого преобразования Фурье математической модели видеосигнала:
|
где - оператор Фурье;
- спектральная плотность видеосигнала, ;
- частота, .
Спектральная плотность видеосигнала находится по формуле (2.1.7).
|