Рассчеты семестрового задания
Рефераты >> Статистика >> Рассчеты семестрового задания

Рассчитаем коэффициент вариации:

- средняя арифметическая,

- среднее квадратическое отклонение,

n=4,06/76,83*100%=5,28 %. < 40%, исходный массив данных по факторному признаку можно считать однородным.

Исключение из массива первичной информации всех резко выделяющихся единиц по уровню факторного признака производится по правилу "трех сигм": исключаются все единицы, у которых уровень признака-фактора не попадает в интервал:

, где

Интервал для значения факторного признака (Уровень механизации труда):

76,83-3*4,06£ xi £ 76,83+3*4,06 или 64,65 £ xi £ 89,00

Для первичных данных этот интервал: 64,65 – 89,00. В интервал попадают значения факторного признака всех предприятий, т.е. исключать предприятия не требуется.

2. Получив однородный массив, выполнить группировку, характеризующую зависимость результативного признака от факторного. Построить ряд распределения с равными интервалами по х, рассчитав величину интервала и число групп по формуле Стерджесса. Определить показатели центра распределения, показатели вариации, асимметрии и эксцесса. Сформулировать выводы.

При построении интервального вариационного ряда число групп определяется по формуле Стерджесса:

m = 1+3,322*lgn

n - общее число единиц совокупности, в n=30 (по условию задания)

m= 1+ 3,322*lg30= 5

Величина интервала i определяется по формуле:

- размах колебания (варьирования) признака.

Уровень механизации труда, % (x)

Число предприятий, частота интервала, f

Накопленные частоты

Середина интервала,

%

%

70-73

6

6

71,5

429

73-76

10

16

74,5

745

76-79

7

23

77,5

542,5

79-82

3

26

80,5

241,5

82-85

4

30

83,5

334

Итого

30

   

2292

Для характеристики среднего значения признака в вариационном ряду применяются: средняя арифметическая, медиана, мода.

Средняя арифметическая для интервального ряда распределения средняя арифметическая определяется по формуле:

где - середина соответствующего интервала значения признака.

Мода - наиболее часто встречающееся значение признака. В интервальном ряду определяется модальный интервал (имеет наибольшую частоту). Значение моды определяется по формуле:

- нижняя граница модального интервала,

- частота модального интервала,

- частота интервала, предшествующего модальному,

- частота интервала, следующего за модальным.

Модальный интервал – второй (73-76), т.к. он имеет наибольшую частоту (10).

Mo=74.714%

Медиана соответствует варианту, стоящему в середине ранжированного ряда. Положение медианы определяется ее номером:

n - число единиц совокупности.

Медианным является первый интервал, в котором сумма накопленных частостей превысит половину общего числа наблюдений, т.е. 15. Численное значение медианы определяется по формуле:

- нижняя граница медианного интервала,

- накопленная частота интервала, предшествующего медианному,

- величина интервала,

- частота медианного интервала.

Медианный интервал – второй (73-76), т.к. это первый интервал, в котором величина накопленных частот больше 15.

Для характеристики размера вариаций признака используются

а) абсолютные показатели:

1) размах колебаний - максимальное и минимальное значение признака.

R = 85-70=15 %.

2) среднее линейное отклонение:

1) среднее квадратическое отклонение и дисперсия:

и

Составим таблицу для расчета этих показателей:

Уровень механизации труда, %

Число предприятий,

Середина интервала,

%

70-73

6

71,5

31,98

5,33

28,4

73-76

10

74,5

23,30

2,33

5,43

76-79

7

77,5

4,69

0,67

0,45

79-82

3

80,5

11,01

3,67

13,47

82-85

4

83,5

26,68

6,67

44,49

Итого

30

97,66

92,24


Страница: