Теория вероятности и математической статистикеРефераты >> Статистика >> Теория вероятности и математической статистике
Свойства коэффициента корреляции
1.
По определению
т.к. всегда неотрицательна, то
2. Если , то с вероятность 1 X и Y связаны линейно.
Рассмотрим X*-Y*, отсюда M(X*-Y*)=0.
Если X и Y дискретные случайные величины, и дисперсия равна 0, то их сумма (разность) является постоянной
Пусть X и Y непрерывные случайные величины, то в соответствии с неравенством Чебышева
т.к.
Это неравенство и обозначает, что с вероятностью 1
откуда y=ax+b, где
Если коэффициент корреляции , то результаты опыта лежат на прямой
В общем случае Y можно представить в виде
Коэффициент корреляции является мерой близости линейной связи между случайными величинами X и Y: чем ближе коэффициент корреляции по модулю к 1, тем более тесно результаты конкретного испытания над X и Y соотносятся с прямой ax+b.
Нахождение плотности вероятности суммы двух независимых случайных величин
Дискретный случай.
Пусть X и Y - две дискретные независимые величины данного испытания и Z=X+Y. Возможное значение Z=z=x+y всегда представляет сумму двух возможных значений слагаемых X=x и Y=y. По правилу сложения
где суммирование распространено на те пары, которые в сумме дают Z. В силу независимости X и Y
Приняв во внимание, что y=z-x
последняя сумма распространяется не на все значения x, а только на такие, для которых z-x равно одному из возможных значений y.
Если условиться, что P(y=z-x)=0, если z-x не принадлежит к числу возможных значений Y, то
Аналогично
Формулы (1) и (2) определяют композицию величин X и Y.
Или
Непрерывный случай.
Пусть X и Y независимые непрерывные случайные величины. Пусть f(x,y) - двумерная плотность вероятности двумерной случайной величины XY. Плотность совместного распределения f(x,y) в силу независимости X и Y имеет вид
Рассмотрим функцию распределения случайной величины Z.
Для того, чтобы имело место событие действительное число необходимо и достаточно, чтобы случайная точка Q(x,y) попала в область 1.
Тогда эта вероятность равна
Дифференцируя под знаком интеграла
Двумерное нормальное распределение
Двумерная случайная величина XY распределена нормально, если ее плотность вероятности f(x,y) имеет вид
Свойства двумерного нормального распределения
1.
2.
т.е. X и Y имеет одномерное нормальное распределение.
Сделаем подстановку
тут мы для краткости обозначили
Прибавляя и вычитая в показателе степени по e по
Сделаем подстановку
3. то X и Y независимые случайные величины, то плотность вероятности двумерная распадается на произведение одномерных
Найдем условную плотность вероятности
Подставляя в полученное выражение значения и получаем
Вывод: условная плотность вероятности оказалось нормальной с мат. ожиданием
и дисперсией, постоянной
Многомерное нормальное распределение
n-мерная непрерывная случайная величина имеет нормальное распределение, если ее многомерная плотность вероятности в матричном виде
Показать, что формула
в двумерном случае переходит в
для n=2 находим
Показатель степени при e
Найдем обратную матрицу матрице В
Проводим непосредственное доказательство
B - ковариационная матрица