Теория вероятности и математической статистике
Рефераты >> Статистика >> Теория вероятности и математической статистике

Вводим сложное событие B: В результате испытания над двумерной случайной величиной XY, случайная величина Y приняла значение yj­.

Найдем условную вероятность:

Аналогично:

Покажем что сумма условных вероятностей: ;

Условным математическим ожиданием является выражение:

;

Условной дисперсией называется выражение:

;

.

Условное мат. ожидание и дисперсия отличаются от безусловной только тем, что в их определении подставляется условная вероятность вместо безусловной.

Условное мат. ожидание случайной величены, при условии, что другая случайная величена приняла заданное значение определяет число-точку, относительно которой группируются результаты конкретных испытаний над одной случайной величиной, при условии, что в этом испытании (над двумерной случайной величиной XY) вторая случайная величена приняла заданное фиксированное значение.

Условная дисперсия определяет степень концентрации результатов конкретных испытаний над одной случайной величиной относительно условного мат. ожидания.

При решении практических задач условное мат ожидание и условная дисперсия обычно используются в следующем случае: проводят испытание над X и Y, исследователь имеет возможность измерять результаты испытания над одной случайной величиной, измерение другой недоступно. Если условные дисперсии малы, то в качестве неизвестного значения не измеряемой случайной величены, которую она приняла в результате испытания, можно брать мат. ожидание.

Двумерные непрерывные случайные величины.

Двумерная случайная величина называется непрерывной случайной величиной, если пространством ее элементарных событий является плоскость, либо область плоскости, либо область конечной ненулевой плоскости. Очевидно что X и Y являются одномерными непрерывными случайными величинами.

Следствием этого определения является следующее: любое сложное событие размерности 1 (произвольная кривая, принадлежащая пространству элементарных событий) имеет нулевую вероятность т.к. в противном случае вероятность достоверного события никогда бы не равнялась единице. Числовая скалярная функция двух действительных аргументов называется двумерной плотностью вероятности, двумерной случайной величины XY, если для фиксированных значений своих аргументов она выполняет равенство . Приведенное здесь определение является аналогичным определению одномерной плотности вероятности.

Ниже будет выведено условие существования плотности вероятности для фиксированных x, y.

Рассмотрим произвольную область G.

Разобьем область G на множество прямоугольников, покрывающих область G. Тогда на основании 3-й аксиомы теории вероятности имеем: вероятность искомого события равна:

. Точное выражение получим перейдя к пределу: (показать самим).

Числовая скалярная функция двух действительных аргументов называется двумерной функцией распределения, если она при фиксированном числе своих аргументов численно равна вероятности наступления Fx,y(x,y)=P(X£x, Y£y), если X, y - непрерывные случайные величины, то значение функции распределения не изменится.

Доказать:

По определению второй смешанной производной.

Найдем по двумерной плотности одномерные плотности случайных величин X и Y.

Т.к. полученное равенство верно для всех х, то подинтегральные выражение

аналогично

В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем курсе мы исследуем только 2 конструкции - дискретные или непрерывные, то для них полученные формулы эквивалентны и не имеет смысла какую-то из них вводить как первичную.

Условная плотность вероятности.

Найдем плотность вероятности случайной величины Y при условии, что в результате испытания над случайной величиной XY , X приняло значение х.

Обозначим

тут мы использовали второе определение одномерной плотности.

В качестве условной плотности вероятности используется следующее выражение

Обоснование выражения для условной плотности вероятности

Выведем выражение для a

Обозначим

Условное мат. ожидание и дисперсия линии регрессии - зависимость Y от X, выраженная в изменении средних значений Y при переходе x от одного значения к другому. Найдем математическое ожидание MZ, где

Двумерные независимые случайные величины (двумерные дискретные случайные величины)

Двумерная дискретная случайная величина называется случайной величиной с независимыми компонентами, если

Показать самим, что справедливо

Доказать самим, что если испытание, исходом которого является пара чисел является композицией двух независимых испытаний, то случайные величины X Y независимы.


Страница: