Балансовая модель
Рефераты >> Менеджмент >> Балансовая модель

ПОЛНЫЕ ВНУТРИПРОИЗВОДСТВЕННЫЕ

ЗАТРАТЫ.

Выясним экономический смысл элементов Sik матрицы S.

Пусть производится только единица конечного продукта 1-й отрасли, т.е.

1

_ 0

У1 = :

0

Подставляя этот вектор в равенство ( 7 ), получим

1 S11

_ 0 S21 _

х = S­ : = : = S1

0 Sn1 0

_ 1

задавшись ассортиментным вектором У2 = 0 , получим

:

0

0 S12

_ 1 S22 _

х = S­ : = : = S2

0 Sn2

Аналогично, валовый выпуск х, необходимый для производства единицы конечного продукта kотрасли, составит

0 S1k

_ : S2k _

х = S­ 1 = : = Sk , ( 9 )

: Snk

0

т.е. k столбец матрицы S.

Из равенства ( 9 ) вытекает следующее:

Чтобы выпустить только единицу конечного продукта k отрасли, необходимо в 1-й отрасли выпустить х1=S1k, во 2-й х2=S2k и т.д., в i отрасли выпустить xi=Sik и, наконец, в nотрасли выпустить xn=Snk единиц продукции.

Так при этом виде конечного продукта производства только единица k-го продукта, то величины S1k, S2k, …, Sik, …, Snk, представляют собой коэффициенты полных затрат продукции 1-й, 2-й и т.д., nотраслей идущей на изготовление указанной единицыk-го продукта. Мы уже ввели раннее коэффициенты прямых затрат a1k, a2k, …, aik, …, ank на единицу продукции kотрасли, которые учитывали лишь ту часть продукции каждой отрасли, которая потребляется непосредственно k отраслью. Но, очевидно, необходимо обеспечить замкнутый производственный цикл. Если бы продукция iотрасли поступала бы только в k отрасль в количестве aik, то производство k отрасли все равно не было бы обеспеченно, ибо потребовалось еще продукты 1-й отрасли ( a1k ), 2-й отрасли (a2k ) и т.д. А они в свою очередь не смогут работать, если не будут получать продукцию той же iотрасли ( ai1, ai2, … и т.д.). Проиллюстрируем сказанное на примере табл.2

Пусть нас не интересует выпуск для внешнего потребления продукции 2-й отрасли ( k=2 ) и мы хотим определить затраты продукции 1-й отрасли на единицу этой продукции. Из табл.2 находим, что на каждую единицу продукции 2-й отрасли ( х2=1 ) затрачивается: продукции 1-й отрасли a12=0.4 и 2-й отрасли a22=0.1.

Таковы будут прямые затраты. Пусть нужно изготовить у2=100. Можно ли для этого планировать выпуск 1-й отрасли х1=0.4­100=40 ? Конечно, нельзя, т.к. необходимо учитывать, что 1-я отрасль часть своей продукции потребляет сама ( а11=0.2 ), и поэтому суммарный ее выпуск следует скорректировать: х1=40+0.2­40=48. Однако и эта цифра неверна, т.к. теперь уже следует исходить из нового объема продукции 1-й отрасли – х1'=48 и т.д. Но дело не только в этом. Согласно табл.2 продукция 2-й отрасли также необходима для производства и 1-й и 2-й отраслей и поэтому потребуется выпускать больше, чем у2=100. Но тогда возрастут потребности в продукции 1-й отрасли. Тогда достаточно обратиться к составленной систем уравнений, положив у1=0 и у2=1 ( см п.2 ):

0.8х1 - 0.4х2 = 0

-0.55х1 + 0.9х2 = 1

Решив эту систему, получим х1=0.8 и х2=1.5. Следовательно, для того чтобы изготовить единицу конечного продукта 2-й отрасли, необходимо в 1-й отрасли выпустить продукции х1=0.8. Эту величину называют коэффициентом полных затрат и обозначают ее через S12. Таким образом, если а12=0.4 характеризует затраты продукции 1-й отрасли на производство единицы продукции 2-й отрасли, используемые непосредственно во 2-й отрасли ( почему они и были названы прямые затраты ), то S12 учитывают совокупные затраты продукции 1-й отрасли как прямые ( а12 ), так и косвенные затраты, реализуемые через другие ( в данном случае через 1-ю же ) отрасли, но в конечном счете необходимые для обеспечения выпуска единицы конечного продукта 2-й отрасли. Эти косвенные затраты составляют S12-a12=0.8-0.4=0.4

Если коэффициент прямых затрат исчисляется на единицу валового выпуска, например а12=0.4 при х2=1, то коэффициент полных затрат рассчитывается на единицу конечного продукта.

Итак, величина Sik характеризует полные затраты продукции i отрасли для производства единицы конечного продукта k отрасли, включающие как прямые ( aik ), так и косвенные ( Sik - aik ) затраты.

Очевидно, что всегда Sik > a­ik.

Если необходимо выпустить уk единиц k-го конечного продукта, то соответствующий валовый выпуск каждой отрасли составит на основании системы ( 8 ):

x1 = S1k·yk, x2 = S2k·yk, …, xn = Snk·yk ,

что можно записать короче в виде:

_ _

x = Sk·yk ( 10 )

Наконец, если требуется выпустить набор конечного продукта, заданный ассортимент-

_ у1

ным вектором У = : , то валовый выпуск k отрасли xk, необходимый для его

уn

обеспечения, определится на основании равенств ( 10 ) как скалярное произведение столбца Sk на вектор У, т.е.

_ _

xk = Sk1y1 + Sk2y2 + … + Sknyn = Sk·y , ( 11 )

а весь вектор-план х найдется из формулы ( 7 ) как произведение матрицы S на вектор У.

Таким образом, подсчитав матрицу полных затрат S, можно по формулам ( 7 ) – ( 11 ) рассчитать валовый выпуск каждой отрасли и совокупный валовый выпуск всех отраслей при любом заданном ассортиментном векторе У.

Можно также определить, какое изменение в вектор-плане Dх = ( Dх1, Dх2, …, Dхn ) вызовет заданное изменение ассортиментного продукта DУ = ( Dу1, Dу2, …, Dуn ) по формуле:

_ _

Dх = S·DУ , ( 12 )

Приведем пример расчета коэффициентов полных затрат для балансовой табл.2. Мы имеем матрицу коэффициентов прямых затрат:

0.2 0.4

А =

0.55 0.1

Следовательно,

1 -0.2 -0.4 0.8 -0.4

Е - А = =

-0.55 1 -0.1 -0.55 0.9

Определитель этой матрицы

0.8 -0.4

D [ E - A ] = = 0.5

-0.55 0.9

Построим присоединенную матрицу ( Е - А )*. Имеем:

0.9 0.4

( Е - А )* = ,

0.55 0.8

откуда обратная матрица, представляющая собой таблицу коэффициентов полных затрат, будет следующей:

1 0.9 0.4 1.8 0.8

S = ( Е - А )-1 = ––– =

0.5 0.55 0.8 1.1 1.6

Из этой матрицы заключаем, что полные затраты продукции 1-й и 2-й отрасли, идущие на производство единицы конечного продукта 1-й отрасли, составляет S11=0.8 и S21=1.5. Сравнивая с прямыми затратами а11=0.2 и а21=0.55, устанавливаем, косвенные затраты в этом случае составят 1.8-0.2=1.6 и 1.1-0.55=0.55.

Аналогично, полные затраты 1-й и 2-й отрасли на производство единицы конечного продукта 2-й отрасли равны S12=0.8 и S22=1.5, откуда косвенные затраты составят 0.8-0.4=0.4 и 1.6-0.1=1.5.

Пусть требуется изготовить 480 единиц продукции 1-й и 170 единиц 2-й отраслей.

Тогда необходимый валовый выпуск х = х1 найдется из равенства ( 7 ):


Страница: