Системный анализ и проблемы принятия решений
Рефераты >> Кибернетика >> Системный анализ и проблемы принятия решений

простая аналитическая модель позволяет вчерне разобраться в основ­ных закономерностях явления, наметить главные его контуры, а лю­бое дальнейшее уточнение может быть получено статистическим моде­лированием.

3. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ

ИССЛЕДОВАНИЯ ОПЕРАЦИИ. ДЕТЕРМИНИРОВАННЫЙ СЛУЧАЙ

Рассмотрим задачу исследования операций в общей постановке, безотносительно к виду и цели операции.

Пусть имеется некоторая операция 0, т. е. управляемое меро­приятие, на исход которого мы можем в какой-то мере влиять, выбирая тем или другим способом зависящие от нас параметры. Эффективность операции характеризуется каким-то численным критерием или пока­зателем W, который требуется обратить в максимум (случай, когда его требуется обратить в минимум, сводится к предыдущему и отдельно не рассматривается).

Предположим, что тем или иным способом математическая модель операции построена; она позволяет вычислить показатель эффектив­ности W при любом принятом решении, для любой совокупности условий, в которых выполняется операция.

Рассмотрим сначала наиболее простой случай: все факторы, от которых зависит успех операции, делятся на две группы:

— заданные, заранее известные факторы (условия проведения опе­рации) а1, а2 ., на которые мы влиять не можем;

— зависящие от нас факторы (элементы решения) х1, х2, ., которые мы, в известных пределах, можем выбирать по своему усмотрению.

Этот случай, в котором факторы, влияющие на исход операции, либо заранее известны, либо зависят от нас, мы будем называть детерминированным.

Заметим, что под «заданными условиями» операции а1,а2 . мо­гут пониматься не только обычные числа, но и функции, в частности— ограничения, наложенные на элементы решения. Равным об­разом, элементы решения х1, х2, . также могут быть не только числа­ми, но и функциями.

Показатель эффективности W зависит от обеих групп факторов:

как от заданных условий, так и от элементов решения. Запишем эту зависимость в виде общей символической формулы:

W=W(a1, а2, . х1, х2, .). (3.1)

Так как математическая модель построена, будем считать, что за­висимость (3.1) нам известна, и для любых а1, а2 .; х1, х2, . мы мо­жем найти W.

Тогда задачу исследования операций можно математически сфор­мулировать так:

При заданных условиях а1, а2, . найти такие элементы решения х1, х2, ., которые обращают показатель W в максимум.

Перед нами — типично математическая задача, относящаяся к классу так называемых вариационных задач. Методы решения таких задач подробно разработаны в математике. Простейшие из этих методов («задачи на максимум и минимум») хорошо известны каждому инженеру. Для нахождения максимума или минимума (коро­че, экстремума) функции нужно продифференцировать ее по аргу­менту (или аргументам, если их несколько), приравнять производные нулю и решить полученную систему уравнений.

Однако, этот простой метод в задачах исследования операций имеет ограниченное применение. Причин этому несколько.

1. Когда аргументов х1, х2, . много (а это типично для задач ис­следования операций), совместное решение системы уравнений, полу­ченных дифференцированием основной зависимости, зачастую оказы­вается не проще, а сложнее, чем непосредственный поиск экстремума.

2. В случае, когда на элементы решения х1, х2, . наложены огра­ничения (т. е., область их изменения ограничена), часто экстремум на­блюдается не в точке, где производные обращаются в нуль, а на границе области возможных решений. Возникает специфическая для исследования операций математическая задача «поиска экстре­мума при наличии ограничений», не укладывающаяся в схему класси­ческих вариационных методов.

3. Наконец, производных, о которых идет речь, может вовсе не существовать, например, если аргументы х1, х2, . изменяются не не­прерывно, а дискретно, или же сама функция W имеет особенности.

Общих математических методов нахождения экстремумов функций любого вида при наличии произвольных ограничений не существует. Однако для случаев, когда функция и ограничения обладают опреде­ленными свойствами, современная математика предлагает ряд Спе­циальных методов. Например, если показатель эффективности W зави­сит от элементов решения х1, х2, . линейной ограничения, на­ложенные на х1, х2, ., также имеют вид линейных равенств (или неравенств), максимум функции W находится с помощью специального аппарата, так называемого линейного программирова­ния. Если эти функции обладают другими свойствами (на­пример, выпуклы или квадратичны), применяется аппарат «выпуклого» или «квадратичного» программирования, более сложный по сравне­нию с линейным программированием, но все же позволяющий в прием­лемые сроки найти решение. Если операция естественным образом расчленяется на ряд «шагов» или «этапов» (например, хозяйственных лет), а показатель эффективности W выражается в виде суммы показа­телей Wi, достигнутых за отдельные этапы, для нахождения решения, обеспечивающего максимальную эффективность, может быть применен метод динамического программирования.

Если операция описывается обыкновенными дифференциальными уравнениями, а управление, меняющееся со временем, представляет собой некоторую функцию x(f), то для нахождения оптимального уп­равления может оказаться полезным специально разработанный метод Л. С. Понтрягина.

Таким образом, в рассматриваемом детерминированном случае задача отыскания оптимального решения сводится к математической задаче отыскания экстремума функции W; эта задача может быть весь­ма сложной (особенно при многих аргументах), но, в конце концов, является вычислительной задачей, которую, особенно при наличии быстродействующих ЭЦВМ, удается, так или иначе, решить до конца. Трудности, возникающие при этом, являются расчетными, а не прин­ципиальными.

4. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ ОПЕРАЦИИ. ОПТИМИЗАЦИЯ РЕШЕНИЯ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

В предыдущем параграфе мы рассмотрели самый простой, пол­ностью детерминированный случай, когда все условия операции а1, а2, . известны, и любой выбор решения х1, х2, . приводит к впол­не определенному значению показателя эффективности W.

К сожалению, этот простейший случай не так уж часто встре­чается на практике. Гораздо более типичен случай, когда не все условия, в которых будет проводиться операция, известны зара­нее, а некоторые из них содержат элемент неопределенности. Напри­мер, успех операции может зависеть от метеорологических условий, которые заранее неизвестны, или от колебаний спроса и предложения, заранее трудно предвидимых, связанных с капризами моды, или же от поведения разумного противника, действия которого заранее неиз­вестны.

В подобных случаях эффективность операции зависит уже не от двух, а от трех категорий факторов:

— условия выполнения операции а1, а2, ., которые известны за­ранее и изменены быть не могут;

— неизвестные условия или факторы Y1, Y2, . ;

— элементы решения х1, х2, ., которые нам предстоит выбрать. Пусть эффективность операции характеризуется некоторым пока­зателем W, зависящим от всех трех групп факторов. Это мы запишем в виде общей формулы:


Страница: