Дефект масс и энергия связи ядер
Рефераты >> Физика >> Дефект масс и энергия связи ядер

Формула Леви, по-видимому, лучшая из существующих, однако она имеет один существенный недостаток: она плохо применима на границе областей действия коэффициентов. Имен­но около Z и N, равных 28, 40, 50, 64, 82, 126 и 140, формула Леви дает самые большие расхождения, в особенности если по ней рассчитывать энергии β-распадов. Кроме того, коэффициен­ты формулы Леви вычислены без учета новейших значений масс и, по-видимому, должны быть уточнены. По мнению Б. С. Джелепова и Г. Ф. Драницыной, при этом вычислении следует уменьшить число подобластей с разными наборами коэффи­циентов α и δ, отбросив подоболочки Z=64 и N=140.

Формула Камерона содержит много постоянных. Этим же недостатком страдает и формула Бекеров. В первом варианте формулы Бекеры, исходя из того, что ядерные силы короткодействующие и обладают свойством насыщения, предположили, что ядро следует разделить на внешние нуклоны и внутреннюю часть, содержащую заполненные оболочки. Они приняли, что внешние нуклоны не взаимодействуют друг с дру­гом, не считая энергии, выделяющейся при образовании пар. Из этой простой модели следует, что нуклоны одинаковой чет­ности имеют энергию связи, вызванную связью с сердцевиной, зависящую только от избытка нейтронов I=N–Z. Таким обра­зом, для энергии связи предложен первый вариант формулы

ЕB=b'(I)А+а' (I)+P' (A, I)[(-1)N+(-1)Z]+S'(A, I)+R'(A,I),(3.2.10)

где Р'—член, учитывающий эффект спаривания, зависящий от четности N и Z; S'—поправка на эффект оболочек; R'—малый остаток.

В этой формуле существенно предположение, что энергия связи на один нуклон, равная b', зависит только от избытка нейтронов I. Это означает, что сечения энергетической поверх­ности по линиям I=N–Z, самые длинные сечения, содержащие 30—60 нуклидов, должны иметь одинаковый уклон, т.е. должны характеризоваться прямой линией. Опытные данные подтверждают довольно хорошо это предположение. В дальнейшем Бекеры дополнили эту формулу еще одним членом:

ЕB=b(I)А+а(I)+c(A)+P (A, I)[(-1)N+(-1)Z]+S(A, I)+R(A,I). (3.2.11)

Сравнивая значения, полученные по этой формуле, с экспериментальными значениями масс Вапстра и Хьюзенга и урав­нивая их по методу наименьших квадратов, Бекеры получили ряд значений коэффициентов b и а для 2≤I≤58 и 6≤A≤258, т. е. более 400 цифровых постоянных. Для членов Р, учитываю­щих четность N и Z, они также приняли набор некоторых эмпи­рических значений.

Чтобы уменьшить число постоянных, были предложены фор­мулы, в которых коэффициенты а, b и с представлены в виде функций от I и А. Однако вид этих функций весьма сложен, например функция b(I) есть полином пятой степени от I и содержит, кроме того, два члена с синусом.

Таким образом, эта формула оказалась не проще формулы Камерона. По утверждению Бекеров, она дает значения, рас­ходящиеся с измеренными массами для легких нуклидов не бо­лее ±400 кэв, а для тяжелых (A>180) не более ±200 кэв. У оболочек в отдельных случаях расхождение может достигать ± 1000 кэв. Недостаток работы Бекеров — отсутствие таблиц масс, вычисленных по этим формулам.

В заключение, подводя итоги, следует отметить, что сущест­вует очень большое число полуэмпирических формул разного качества. Несмотря на то, что первая из них, формула Бете— Вейцзекера, как будто устарела, она продолжает входить как составная часть почти во все самые новые формулы, кроме формул типа Леви — Зелдеса. Новые формулы достаточно слож­ны и вычисление по ним масс довольно трудоемко.

Литература

1. Завельский Ф.С. Взвешивание миров, атомов и элементарных частиц. –М.: Атомиздат, 1970.

2. Г. Фраунфельдер, Э. Хенли, Субъатомная физика. –М.: «Мир», 1979.

3. Кравцов В.А. Масса атомов и энергии связи ядер. –М.: Атомиздат, 1974.

[1] В физической шкале атомных весов атомный вес изотопа кислорода принят равным точно 16,0000.


Страница: