Корреляция и непараметрические критерии различия в педагогических исследованиях
Рефераты >> Педагогика >> Корреляция и непараметрические критерии различия в педагогических исследованиях

Вычислить средние арифметические величины для уровня физической работоспособности и результата гонки:

Найти отклонения показателей рядов "А" и "Б" от своих средних арифметических величин (dА и dБ). Например: для уровня ФР170 в 24,8 кГм/мин/кГ отклонения от среднего значения будут равны: 24,8 - 20,0 = + 4,8; для спортивного результата в 63 мин.: 63 - 73 = - 10 и т.д.

Вычислить квадраты найденных отклонений (dА2 и dБ2). Получим: + 4,82 = 23,04; - 102 = 100.

Найти суммы квадратов отклонений:

Определить произведения отклонений (dА и dБ). Получим: (+ 4,8) * ( - 10) = - 48.

Найти сумму произведений отклонений: SdА dБ = 174,9 » 175.

Подставить найденное значение в формулу:

Определить достоверность высчитанного коэффициента корреляции.

Установлено, что если парных факторов меньше 100, то оценку достоверности целесообразно производить по таблице критических значений коэффициента корреляции.

Критические значения коэффициента корреляции r

Число

коррелируемых пар, п

Уровень значимости, Р

Число

коррелируемых

пар, п

Уровень значимости, Р

0,05

0,01

0,05

0,01

3

0,977

0,99988

19

456

575

4

950

990

20

444

561

5

878

959

21

433

549

6

811

917

22

423

537

7

754

874

25

396

505

8

707

834

30

361

463

9

666

798

35

332

435

10

632

765

40

310

407

11

602

735

45

292

384

12

576

708

50

277

364

13

553

684

60

253

353

14

532

661

70

234

308

15

514

641

80

219

288

16

497

623

90

206

272

17

482

606

100

196

258

18

468

590

     

Коэффициент корреляции признается статистически значимым с вероятностью ошибки <0,05, если r > r 05, и с вероятностью ошибки <0,01, если r > r01.

Табличные значения даны для двух уровней значимости: Р = 0,05 и Р = 0,01. Полученный коэффициент корреляции может считаться достоверным лишь в том случае, если его числовое значение превышает табличное значение хотя бы при уровне значимости Р = 0,05 для данного числа парных факторов. В приведенном примере для 10 парных факторов табличные значения составляют: Р05 + = 0,623, Р01 = 0,765. Высчитанный коэффициент равен 0,837, т.е. он больше табличного значения при Р = 0,01.

Если парных факторов больше 100, оценку достоверности коэффициента целесообразно рассчитывать по формуле средней ошибки коэффициента корреляции (mr):

Принято считать, что достоверным коэффициент корреляции может быть признан только тогда, когда он превышает свою ошибку в 3 и более раза. В некоторых случаях формула может быть использована для оценки достоверности и при небольшом числе парных факторов, В данном примере:


Страница: